101 research outputs found
Estimating population parameters of longsnout seahorses, Hippocampus reidi (Teleostei: Syngnathidae) through mark-recapture
Rare Copy Number Deletions Predict Individual Variation in Intelligence
Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed
Kidney cancer mortality in Spain: geographic patterns and possible hypotheses
<p>Abstract</p> <p>Background</p> <p>Since the second half of the 1990s, kidney cancer mortality has tended to stabilize and decline in many European countries, due to the decrease in the prevalence of smokers. Nevertheless, incidence of kidney cancer is rising across the sexes in some of these countries, a trend which may possibly reflect the fact that improvements in diagnostic techniques are being outweighed by the increased prevalence of some of this tumor's risk factors. This study sought to: examine the geographic pattern of kidney cancer mortality in Spain; suggest possible hypotheses that would help explain these patterns; and enhance existing knowledge about the large proportion of kidney tumors whose cause remains unknown.</p> <p>Methods</p> <p>Smoothed municipal relative risks (RRs) for kidney cancer mortality were calculated in men and women, using the conditional autoregressive model proposed by Besag, York and Molliè. Maps were plotted depicting smoothed relative risk estimates, and the distribution of the posterior probability of RR>1 by sex.</p> <p>Results</p> <p>Municipal maps displayed a marked geographic pattern, with excess mortality in both sexes, mainly in towns along the Bay of Biscay, including areas of Asturias, the Basque Country and, to a lesser extent, Cantabria. Among women, the geographic pattern was strikingly singular, not in evidence for any other tumors, and marked by excess risk in towns situated in the Salamanca area and Extremaduran Autonomous Region. This difference would lead one to postulate the existence of different exposures of environmental origin in the various regions.</p> <p>Conclusion</p> <p>The reasons for this pattern of distribution are not clear, and it would thus be of interest if the effect of industrial emissions on this disease could be studied. The excess mortality observed among women in towns situated in areas with a high degree of natural radiation could reflect the influence of exposures which derive from the geologic composition of the terrain and then become manifest through the agency of drinking water.</p
The Great American Crime Decline : Possible Explanations
This chapter examines the most important features of the crime decline in the United States during the 1990s-2010s but also takes a broader look at the violence declines of the last three centuries. The author argues that violent and property crime trends might have diverged in the 1990s, with property crimes increasingly happening in the online sphere and thus traditional property crime statistics not being reflective of the full picture. An important distinction is made between ‘contact crimes’ and crimes that do not require a victim and offender to be present in the same physical space. Contrary to the uncertainties engendered by property crime, the declines in violent (‘contact’) crime are rather general, and have been happening not only across all demographic and geographic categories within the United States but also throughout the developed world. An analysis of research literature on crime trends has identified twenty-four different explanations for the crime drop. Each one of them is briefly outlined and examined in terms of conceptual clarity and empirical support. Nine crime decline explanations are highlighted as the most promising ones. The majority of these promising explanations, being relative newcomers in the crime trends literature, have not been subjected to sufficient empirical scrutiny yet, and thus require further research. One potentially fruitful avenue for future studies is to examine the association of the most promising crime decline explanations with improvements in self-control
The ELBA Force Field for Coarse-Grain Modeling of Lipid Membranes
A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent) features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (). Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC) in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids); this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities
FROM LABORATORY TO PRACTICE: NEGLECTED ISSUES IN IMPLEMENTING FRAME-OF-REFERENCE RATER TRAINING
Mechanistic aspects and novel biomarkers of responder and non-responder phenotypes in galactosamine-induced hepatitis
- …
