4,022 research outputs found

    Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)

    Get PDF
    The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases

    Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    Get PDF
    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}

    Master equation approach to DNA-breathing in heteropolymer DNA

    Full text link
    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes and of the waiting times between successive bubble events from the master equation. A comparison to results of a stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure

    The diagonalization method in quantum recursion theory

    Full text link
    As quantum parallelism allows the effective co-representation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one.Comment: 15 pages, completely rewritte

    Initial data for fluid bodies in general relativity

    Get PDF
    We show that there exist asymptotically flat almost-smooth initial data for Einstein-perfect fluid's equation that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where tangential derivatives of any order are continuous at that boundary. PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys. Rev.

    Asymptotically Hyperbolic Non Constant Mean Curvature Solutions of the Einstein Constraint Equations

    Get PDF
    We describe how the iterative technique used by Isenberg and Moncrief to verify the existence of large sets of non constant mean curvature solutions of the Einstein constraints on closed manifolds can be adapted to verify the existence of large sets of asymptotically hyperbolic non constant mean curvature solutions of the Einstein constraints.Comment: 19 pages, TeX, no figure

    Black hole collisions from Brill-Lindquist initial data: predictions of perturbation theory

    Get PDF
    The Misner initial value solution for two momentarily stationary black holes has been the focus of much numerical study. We report here analytic results for an astrophysically similar initial solution, that of Brill and Lindquist (BL). Results are given from perturbation theory for initially close holes and are compared with available numerical results. A comparison is made of the radiation generated from the BL and the Misner initial values, and the physical meaning is discussed.Comment: 11 pages, revtex3.0, 5 figure

    Energetic Components of Cooperative Protein Folding

    Full text link
    A new lattice protein model with a four-helix bundle ground state is analyzed by a parameter-space Monte Carlo histogram technique to evaluate the effects of an extensive variety of model potentials on folding thermodynamics. Cooperative helical formation and contact energies based on a 5-letter alphabet are found to be insufficient to satisfy calorimetric and other experimental criteria for two-state folding. Such proteinlike behaviors are predicted, however, by models with polypeptide-like local conformational restrictions and environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press

    A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    Full text link
    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low Temperature Physic

    Membranes in rod solutions: a system with spontaneously broken symmetry

    Full text link
    We consider a dilute solution of infinitely rigid rods near a curved, perfectly repulsive surface and study the contribution of the rod depletion layer to the bending elastic constants of membranes. We find that a spontaneous curvature state can be induced by exposure of BOTH sides of the membrane to a rod solution. A similar result applies for rigid disks with a diameter equal to the rod's length. We also study the confinement of rods in spherical and cylindrical repulsive shells. This helps elucidate a recent discussion on curvature effects in confined quantum mechanical and polymer systems.Comment: 10 pages, 2 figures, 1 table; submitted to PR
    corecore