3,272 research outputs found

    Stretching an heteropolymer

    Full text link
    We study the influence of some quenched disorder in the sequence of monomers on the entropic elasticity of long polymeric chains. Starting from the Kratky-Porod model, we show numerically that some randomness in the favoured angles between successive segments induces a change in the elongation versus force characteristics, and this change can be well described by a simple renormalisation of the elastic constant. The effective coupling constant is computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur

    Non-uniqueness in conformal formulations of the Einstein constraints

    Get PDF
    Standard methods in non-linear analysis are used to show that there exists a parabolic branching of solutions of the Lichnerowicz-York equation with an unscaled source. We also apply these methods to the extended conformal thin sandwich formulation and show that if the linearised system develops a kernel solution for sufficiently large initial data then we obtain parabolic solution curves for the conformal factor, lapse and shift identical to those found numerically by Pfeiffer and York. The implications of these results for constrained evolutions are discussed.Comment: Arguments clarified and typos corrected. Matches published versio

    Initial data for fluid bodies in general relativity

    Get PDF
    We show that there exist asymptotically flat almost-smooth initial data for Einstein-perfect fluid's equation that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where tangential derivatives of any order are continuous at that boundary. PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys. Rev.

    Trapped Surfaces in Vacuum Spacetimes

    Get PDF
    An earlier construction by the authors of sequences of globally regular, asymptotically flat initial data for the Einstein vacuum equations containing trapped surfaces for large values of the parameter is extended, from the time symmetric case considered previously, to the case of maximal slices. The resulting theorem shows rigorously that there exists a large class of initial configurations for non-time symmetric pure gravitational waves satisfying the assumptions of the Penrose singularity theorem and so must have a singularity to the future.Comment: 14 page

    Master equation approach to DNA-breathing in heteropolymer DNA

    Full text link
    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes and of the waiting times between successive bubble events from the master equation. A comparison to results of a stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure

    Gating-by-tilt of mechanosensitive membrane channels

    Full text link
    We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed kBT and is comparable to what is available under simple ilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strong effect the gating of some channels. Such a phenomenon would be more easy to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure

    Using LISREL to analyze genetic and environmental covariance structure

    Get PDF
    Describes a method in which the linear structural relationships (LISREL) computer program is used for the genetic analysis of covariance structure. The method is illustrated with simulated and published twin data, including an analysis of twin data by N. G. Martin et al (1981) on psychomotor performance during alcohol intoxication

    Testing Hardy nonlocality proof with genuine energy-time entanglement

    Full text link
    We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)]. Unlike, previous energy-time Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure

    On rationality of the intersection points of a line with a plane quartic

    Full text link
    We study the rationality of the intersection points of certain lines and smooth plane quartics C defined over F_q. For q \geq 127, we prove the existence of a line such that the intersection points with C are all rational. Using another approach, we further prove the existence of a tangent line with the same property as soon as the characteristic of F_q is different from 2 and q \geq 66^2+1. Finally, we study the probability of the existence of a rational flex on C and exhibit a curious behavior when the characteristic of F_q is equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case; Conjecture 1 from the previous version is proved wron
    corecore