3,165 research outputs found
Analytical expressions for optimum alignment modes of highly segmented mirrors
The major sources causing deterioration of optical quality in extremely large
optical telescopes are misadjustments of the mirrors, deformations of
monolithic mirrors, and misalignments of segments in segmented mirrors. For
active optics corrections, all three errors, which can partially compensate
each other, are measured simultaneously. It is therefore of interest to
understand the similarities and differences between the three corresponding
types of modes which describe these errors. The first two types are best
represented by Zernike polynomials and elastic modes respectively, both of them
being continuous and smooth functions. The segment misaligment modes, which are
derived by singular value decomposition, are by their nature not smooth and in
general discontinuous. However, for mirrors with a large number of segments,
the lowest modes become effectively both smooth and continuous. This paper
derives analytical expressions for these modes, using differential operators
and their adjoints, for the limit case of infinitesimally small segments. For
segmented mirrors with approximately 1000 segments, it is shown that these
modes agree well with the corresponding lowest singular value decomposition
modes. Furthermore, the analytical expressions reveal the nature of the segment
misalignment modes and allow for a detailed comparison with the elastic modes
of monolithic mirrors. Some mathematical features emerge as identical in the
two cases.Comment: 24 pages, 13 figures, accepted for publication in Journal of Modern
Optic
Community pharmacy type 2 diabetes risk assessment: demographics and risk results
Objectives: To determine the demographics and risk results of patients accessing a community pharmacy diabetes risk assessment service. Method: Participating patients underwent an assessment using a validated questionnaire to determine their 10-year risk of developing type 2 diabetes. Patients were given appropriate lifestyle advice or referred to their general practitioner if necessary. Key findings: In total, 21 302 risk assessments were performed. Nearly one-third (29%) of 3427 risk assessments analysed yielded a result of moderate or high chance of developing the condition. Conclusions: Community pharmacies can identify a significant number of patients at risk of developing type 2 diabetes in the next 10 years. Further follow-up work needs to be done to determine the cost-effectiveness of such a service and the consequences of receiving a risk assessment
Globally discordant Isocrinida (Crinoidea) migration confirms asynchronous Marine Mesozoic Revolution
The Marine Mesozoic Revolution (MMR, starting ~200 million years ago) changed the ecological structure of sea floor communities due to increased predation pressure. It was
thought to have caused the migration of less mobile invertebrates, such as stalked isocrinid crinoids, into deeper marine environments by the end of the Mesozoic. Recent studies questioned this hypothesis, suggesting the MMR was globally asynchronous. Alternatively, Cenozoic occurrences from Antarctica and South America were described as retrograde reversions to Palaeozoic type communities in cool water. Our results provide conclusive evidence that isocrinid migration from shallow to deep water did not occur at the same time all over the world. The description of a substantial new fauna from Antarctica and Australia,
from often-overlooked isolated columnals and articulated crinoids, in addition to the first compilation to our knowledge of Cenozoic Southern Hemisphere isocrinid data, demonstrates a continuous record of shallow marine isocrinids from the Cretaceous-Paleogene to the
Eocene/Oligocene boundary
The depletion of ZDDP additives within marine lubricants and associated cylinder liner wear in RNLI lifeboat engines
Previous work of authors indicated the wear of cylinder liners in marine engines of RNLI lifeboats due to the intense lubricant degradation identified by inductively coupled plasma and Fourier Transform Infrared spectroscopy techniques. In this paper, further analysis carried out to evaluate the effects of lubricant degradation on the actual cylinder liners installed in the Trent Class Lifeboat engines is presented. Surface characterisation of actual cylinder liner’s bore surface showed maximum wear near the top dead centre region compared to rest of the piston stroke. Wear in this region of the cylinder liner surface is controlled primarily by the protective film forming anti-wear additives in the lubricant which limit the direct surface contact between the piston rings and cylinder liner. The condition of zinc dialkyldithiophosphates anti-wear additives was analysed using the nuclear magnetic resonance spectroscopy. Tribology analysis was conducted to evaluate the tribological and boundary film forming performance of zinc dialkyldithiophosphates additives by simulating cylinder liner–piston ring contact near the top dead centre. To further understand the wear mechanisms of the cylinder liner, wear debris analysis (Analytical Ferrography) of lubricant samples was performed. Results revealed the depletion of phosphorus containing zinc dialkyldithiophosphates anti-wear additives as a function of the lubricant’s duty cycle within the marine engines and its effect on the tribological and boundary film forming performance of lubricants. Wear debris analysis showed the generation of ferrous debris potentially from the cylinder liners as a result of reduced anti-wear protection from the depleted zinc dialkyldithiophosphates additives during the tribological contact with piston rings and piston skirt region. These findings are useful to understand the lubricant degradation mechanisms which affect the functionality of cylinder liners, therefore allowing to plan the engine maintenance strategies
Type Inference for Deadlock Detection in a Multithreaded Polymorphic Typed Assembly Language
We previously developed a polymorphic type system and a type checker for a
multithreaded lock-based polymorphic typed assembly language (MIL) that ensures
that well-typed programs do not encounter race conditions. This paper extends
such work by taking into consideration deadlocks. The extended type system
verifies that locks are acquired in the proper order. Towards this end we
require a language with annotations that specify the locking order. Rather than
asking the programmer (or the compiler's backend) to specifically annotate each
newly introduced lock, we present an algorithm to infer the annotations. The
result is a type checker whose input language is non-decorated as before, but
that further checks that programs are exempt from deadlocks
Recommended from our members
Health care system planning for and response to a nuclear detonation
The hallmark of a successful response to a nuclear detonation will be the resilience of the community, region, and nation. An incident of this magnitude will rapidly become a national incident; however, the initial critical steps to reduce lives lost, save the lives that can be saved with the resources available, and understand and apply resources available to a complex and dynamic situation will be the responsibility of the local and regional responders and planners. Expectations of the public health and health care systems will be met to the extent possible by coordination, cooperation, and an effort to produce as consistent a response as possible for the victims. Responders will face extraordinarily stressful situations, and their own physical and psychological health is of great importance to optimizing the response. This article illustrates through vignettes and supporting text how the incident may unfold for the various components of the health and medical systems and provides additional context for the discipline-related actions outlined in the state and local planners’ playbook
Template-Directed Olefin Cross Metathesis
A template containing two secondary dialkylammonium ion recognition sites for encirclement by olefin-bearing dibenzo[24]crown-8 derivatives has been used to promote olefin cross metatheses with ruthenium-alkylidene catalysts. For monoolefin monomers, the rates of metatheses and yields of the dimers are both amplified in the presence of the template. Likewise, for a diolefin monomer, the yield of the dimer is enhanced in the presence of the template under conditions where higher oligomers are not formed
Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic RHBMP-2 and anti-resorptive agents
Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs) utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid) (PLGA) scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 μg) ± anti-resorptive agents: zoledronic acid (5 μg ZA), ZA pre-adsorbed onto hydroxyapatite microparticles, (5 μg ZA/2 % HA) or IkappaB kinase (IKK) inhibitor (10 μg PS-1145). Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01). The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01). Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01). Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation
- …
