51,010 research outputs found

    Bounding and Estimating the Classical Information Rate of Quantum Channels with Memory

    Full text link
    We consider the scenario of classical communication over a finite-dimensional quantum channel with memory using a separable-state input ensemble and local output measurements. We propose algorithms for estimating the information rate of such communication setups, along with algorithms for bounding the information rate based on so-called auxiliary channels. Some of the algorithms are extensions of their counterparts for (classical) finite-state-machine channels. Notably, we discuss suitable graphical models for doing the relevant computations. Moreover, the auxiliary channels are learned in a data-driven approach; i.e., only input/output sequences of the true channel are needed, but not the channel model of the true channel.Comment: This work has been submitted to the IEEE Transactions on Information Theory for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Accelerating an adiabatic process by nonlinear sweeping

    Full text link
    We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slow in the narrow gap region, as contrast to the usual linear sweeping. We find the expected acceleration in the Laudau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N=21.Comment: 4 pages, 3 figure

    Photonic band structure of ZnO photonic crystal slab laser

    Get PDF
    We recently reported on the first realization of ultraviolet photonic crystal laser based on zinc oxide [Appl. Phys. Lett. {\bf 85}, 3657 (2004)]. Here we present the details of structural design and its optimization. We develop a computational super-cell technique, that allows a straightforward calculation of the photonic band structure of ZnO photonic crystal slab on sapphire substrate. We find that despite of small index contrast between the substrate and the photonic layer, the low order eigenmodes have predominantly transverse-electric (TE) or transverse-magnetic (TM) polarization. Because emission from ZnO thin film shows strong TE preference, we are able to limit our consideration to TE bands, spectrum of which can possess a complete photonic band gap with an appropriate choice of structure parameters. We demonstrate that the geometry of the system may be optimized so that a sizable band gap is achieved.Comment: 8 pages, 7 figure
    corecore