655 research outputs found
CD-ROM multimedia como método de ayuda a la enseñanza teórica de un DSP
En este documento se presenta un libro electrónico interactivo realizado en el Departamento de Ingeniería Electrónica de la Escuela Superior de Ingenieros de Sevilla. El material didáctico servirá de complemento a las tradicionales lecciones magistrales asociadas a la asignatura “Complemento de Sistemas Electrónicos Digitales”, obligatoria de tercer curso de Ingeniero de Telecomunicación
Microarray Method for the Rapid Detection of Glycosaminoglycan–Protein Interactions
Glycosaminoglycans (GAGs) perform numerous vital functions within the body. As major components of
the extracellular matrix, these polysaccharides participate in a diverse array of cell-signaling events. We have
developed a simple microarray assay for the evaluation of protein binding to various GAG subclasses. In a
single experiment, the binding to all members of the GAG family can be rapidly determined, giving insight
into the relative specificity of the interactions and the importance of specific sulfation motifs. The arrays
are facile to prepare from commercially available materials
Heparin and Heparan Sulfate: Analyzing Structure and Microheterogeneity [chapter]
available in PMC 2013 August 28The structural microheterogeneity of heparin and heparan sulfate is one of the major reasons for the multifunctionality exhibited by this class of molecules. In a physiological context, these molecules primarily exert their effects extracellularly by mediating key processes of cellular cross-talk and signaling leading to the modulation of a number of different biological activities including development, cell proliferation, and inflammation. This structural diversity is biosynthetically imprinted in a nontemplate-driven manner and may also be dynamically remodeled as cellular function changes. Understanding the structural information encoded in these molecules forms the basis for attempting to understand the complex biology they mediate. This chapter provides an overview of the origin of the structural microheterogeneity observed in heparin and heparan sulfate, and the orthogonal analytical methodologies that are required to help decipher this information
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
Recommended from our members
Variable blood processing procedures contribute to plasma proteomic variability
Background
Plasma is a potentially rich source of protein biomarkers for disease progression and drug response. Large multi-center studies are often carried out to increase the number of samples analyzed in a given study. This may increase the chances of variation in blood processing and handling, leading to altered proteomic results. This study evaluates the impact of blood processing variation on LC–MS/MS proteomic analysis of plasma.
Methods
Initially two batches of patient plasma samples (120 and 204 samples, respectively) were analyzed using LC–MS/MS shotgun proteomics. Follow-up experiments were designed and carried out on healthy donor blood in order to examine the effects of different centrifugation conditions, length of delay until first centrifugation, storage temperature and anticoagulant type on results from shotgun proteomics.
Results
Variable levels of intracellular proteins were observed in subsets of patient plasma samples from the initial batches analyzed. This observation correlated strongly with the site of collection, implicating variability in blood processing procedures. Results from the healthy donor blood analysis did not demonstrate a significant impact of centrifugation conditions to plasma proteome variation. The time delay until first centrifugation had a major impact on variability, while storage temperature and anticoagulant showed less pronounced but still significant effects. The intracellular proteins associated with study site effect in patient plasma samples were significantly altered by delayed processing also.
Conclusions
Variable blood processing procedures contribute significantly to plasma proteomic variation and may give rise to increased intracellular proteins in plasma. Accounting for these effects can be important both at study design and data analysis stages. This understanding will be valuable to incorporate in the planning of protein-based biomarker discovery efforts in the future
Antimicrobial activities of heparin-binding peptides.
Antimicrobial peptides are effector molecules of the innate immune system. We recently showed that the human antimicrobial peptides alpha-defensin and LL-37 bind to glycosaminoglycans (heparin and dermatan sulphate). Here we demonstrate the obverse, i.e. structural motifs associated with heparin affinity (cationicity, amphipaticity, and consensus regions) may confer antimicrobial properties to a given peptide. Thus, heparin-binding peptides derived from laminin isoforms, von Willebrand factor, vitronectin, protein C inhibitor, and fibronectin, exerted antimicrobial activities against Gram-positive and Gram-negative bacteria. Similar results were obtained using heparin-binding peptides derived from complement factor C3 as well as consensus sequences for heparin-binding (Cardin and Weintraub motifs). These sequence motifs, and additional peptides, also killed the fungus Candida albicans. These data will have implications for the search for novel antimicrobial peptides and utilization of heparin-protein interactions should be helpful in the identification and purification of novel antimicrobial peptides from complex biological mixtures. Finally, consensus regions may serve as templates for de novo synthesis of novel antimicrobial molecules
Determination of the primary structure and carboxyl pKAs of heparin-derived oligosaccharides by band-selective homonuclear-decoupled two-dimensional 1H NMR
Determination of the structure of heparin-derived oligosaccharides by 1H NMR is challenging because resonances for all but the anomeric protons cover less than 2 ppm. By taking advantage of increased dispersion of resonances for the anomeric H1 protons at low pD and the superior resolution of band-selective, homonuclear-decoupled (BASHD) two-dimensional 1H NMR, the primary structure of the heparin-derived octasaccharide ∆UA(2S)-[(1 → 4)-GlcNS(6S)-(1 → 4)-IdoA(2S)-]3-(1 → 4)-GlcNS(6S) has been determined, where ∆UA(2S) is 2-O-sulfated ∆4,5-unsaturated uronic acid, GlcNS(6S) is 6-O-sulfated, N-sulfated β-d-glucosamine and IdoA(2S) is 2-O-sulfated α-l-iduronic acid. The spectrum was assigned, and the sites of N- and O-sulfation and the conformation of each uronic acid residue were established, with chemical shift data obtained from BASHD-TOCSY spectra, while the sequence of the monosaccharide residues in the octasaccharide was determined from inter-residue NOEs in BASHD-NOESY spectra. Acid dissociation constants were determined for each carboxylic acid group of the octasaccharide, as well as for related tetra- and hexasaccharides, from chemical shift–pD titration curves. Chemical shift–pD titration curves were obtained for each carboxylic acid group from sub-spectra taken from BASHD-TOCSY spectra that were measured as a function of pD. The pKAs of the carboxylic acid groups of the ∆UA(2S) residues are less than those of the IdoA(2S) residues, and the pKAs of the carboxylic acid groups of the IdoA(2S) residues for a given oligosaccharide are similar in magnitude. Relative acidities of the carboxylic acid groups of each oligosaccharide were calculated from chemical shift data by a pH-independent method
Electrochemical Control of Growth Factor Presentation To Steer Neural Stem Cell Differentiation
A Triad of Lys12, Lys41, Arg78 Spatial Domain, a Novel Identified Heparin Binding Site on Tat Protein, Facilitates Tat-Driven Cell Adhesion
Tat protein, released by HIV-infected cells, has a battery of important biological effects leading to distinct AIDS-associated pathologies. Cell surface heparan sulfate protoglycans (HSPGs) have been accepted as endogenous Tat receptors, and the Tat basic domain has been identified as the heparin binding site. However, findings that deletion or substitution of the basic domain inhibits but does not completely eliminate Tat–heparin interactions suggest that the basic domain is not the sole Tat heparin binding site. In the current study, an approach integrating computational modeling, mutagenesis, biophysical and cell-based assays was used to elucidate a novel, high affinity heparin-binding site: a Lys12, Lys41, Arg78 (KKR) spatial domain. This domain was also found to facilitate Tat-driven β1 integrin activation, producing subsequent SLK cell adhesion in an HSPG-dependent manner, but was not involved in Tat internalization. The identification of this new heparin binding site may foster further insight into the nature of Tat-heparin interactions and subsequent biological functions, facilitating the rational design of new therapeutics against Tat-mediated pathological events
- …
