1,284 research outputs found
Status of three-neutrino oscillation parameters, circa 2013
The standard three-neutrino (3nu) oscillation framework is being increasingly
refined by results coming from different sets of experiments, using neutrinos
from solar, atmospheric, accelerator and reactor sources. At present, each of
the known oscillation parameters [the two squared mass gaps (delta m^2, Delta
m^2) and the three mixing angles (theta_12}, theta_13, theta_23)] is dominantly
determined by a single class of experiments. Conversely, the unknown parameters
[the mass hierarchy, the theta_23 octant and the CP-violating phase delta] can
be currently constrained only through a combined analysis of various
(eventually all) classes of experiments. In the light of recent new results
coming from reactor and accelerator experiments, and of their interplay with
solar and atmospheric data, we update the estimated N-sigma ranges of the known
3nu parameters, and revisit the status of the unknown ones. Concerning the
hierarchy, no significant difference emerges between normal and inverted mass
ordering. A slight overall preference is found for theta_23 in the first octant
and for nonzero CP violation with sin delta < 0; however, for both parameters,
such preference exceeds 1 sigma only for normal hierarchy. We also discuss the
correlations and stability of the oscillation parameters within different
combinations of data sets.Comment: Updated and revised version, accepted for publication in PRD. The
analysis includes the latest (March 2014) T2K disappearance data: all the
figures and the numerical results have been updated, and parts of the text
have been revised accordingl
Lateral stress evolution in chromium sulfide cermets with varying excess chromium
The shock response of chromium sulfide-chromium, a cermet of potential interest as a matrix material for ballistic applications, has been investigated at two molar ratios. Using a combustion synthesis technique allowed for control of the molar ratio of the material, which was investigated under near-stoichiometric (cermet) and excess chromium (interpenetrating composite) conditions, representing chromium:sulfur molar ratios of 1.15:1 and 4:1, respectively. The compacts were investigated via the plate-impact technique, which allowed the material to be loaded under a onedimensional state of strain. Embedded manganin stress gauges were employed to monitor the temporal evolution of longitudinal and lateral components of stress in both materials. Comparison of these two components has allowed assessment of the variation of material shear strength both with impact pressure/strain-rate and time for the two molar ratio conditions. The two materials exhibited identical material strength despite variations in their excess chromium content
Mobile health use in low- and high-income countries: an overview of the peer-reviewed literature.
The evolution of mobile phone technology has introduced new possibilities to the field of medicine. Combining technological advances with medical expertise has led to the use of mobile phones in all healthcare areas including diagnostics, telemedicine, research, reference libraries and interventions. This article provides an overview of the peer-reviewed literature, published between 1 August 2006 and 1 August 2011, for the application of mobile/cell phones (from basic text-messaging systems to smartphones) in healthcare in both resource-poor and high-income countries. Smartphone use is paving the way in high-income countries, while basic text-messaging systems of standard mobile phones are proving to be of value in low- and middle-income countries. Ranging from infection outbreak reporting, anti-HIV therapy adherence to gait analysis, resuscitation training and radiological imaging, the current uses and future possibilities of mobile phone technology in healthcare are endless. Multiple mobile phone based applications are available for healthcare workers and healthcare consumers; however, the absolute majority lack an evidence base. Therefore, more rigorous research is required to ensure that healthcare is not flooded with non-evidence based applications and is maximized for patient benefit
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment
Neutrino oscillation experiments have proved that neutrinos are massive
particles, but can't determine their absolute mass scale. Therefore the
neutrino mass is still an open question in elementary particle physics. An
international collaboration is growing around the project of Microcalorimeter
Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass
with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences
and technical expertise in a common effort towards this challenging experiment.
We discuss the different scenarios and the impact of MARE as a complement of
KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11
workshop, Tokyo 200
An Evaluation of Mergers in the U.S. Petroleum Industry
This paper analyzes the effects of mergers and acquisitions on the profitability of both participating firms and competitor firms in the U.S. petroleum industry. It also identifies distinct economic conditions and firm specific characteristics that are correlated with the performance of the firm and the merger. The span of the study reaches from 1995-2011. It incorporates four unique, yet characteristic mergers of the domestic petroleum industry. The paper finds evidence that mergers and acquisitions affect the profitability of participating firms positively and competitor firms negatively. This study also provides insight into how uniform mergers and acquisitions in this industry may truly be
Evolution of the Red Sequence Giant to Dwarf Ratio in Galaxy Clusters out to z ~ 0.5
We analyze deep g' and r' band data of 97 galaxy clusters imaged with MegaCam
on the Canada-France-Hawaii telescope. We compute the number of luminous
(giant) and faint (dwarf) galaxies using criteria based on the definitions of
de Lucia et al. (2007). Due to excellent image quality and uniformity of the
data and analysis, we probe the giant-to-dwarf ratio (GDR) out to z ~ 0.55.
With X-ray temperature (Tx) information for the majority of our clusters, we
constrain, for the first time, the Tx-corrected giant and dwarf evolution
separately. Our measurements support an evolving GDR over the redshift range
0.05 < z < 0.55. We show that modifying the (g'-r'), m_r' and K-correction used
to define dwarf and giant selection do not alter the conclusion regarding the
presence of evolution. We parameterize the GDR evolution using a linear
function of redshift (GDR = alpha * z + beta) with a best fit slope of alpha =
0.88 +/- 0.15 and normalization beta = 0.44 +/- 0.03. Contrary to claims of a
large intrinsic scatter, we find that the GDR data can be fully accounted for
using observational errors alone. Consistently, we find no evidence for a
correlation between GDR and cluster mass (via Tx or weak lensing). Lastly, the
data suggest that the evolution of the GDR at z < 0.2 is driven primarily by
dry merging of the massive giant galaxies, which when considered with previous
results at higher redshift, suggests a change in the dominant mechanism that
mediates the GDR.Comment: 20 pages, 15 figures. Accepted to MNRA
The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies
This paper presents both the result of a search for fossil systems (FSs)
within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results
of a study of the stellar mass assembly and stellar populations of their fossil
galaxies. In total, 17 groups and clusters are identified at z < 0.25 with
large magnitude gaps between the first and fourth brightest galaxies. All the
information necessary to classify these systems as fossils is provided. For
both groups and clusters, the total and fractional luminosity of the brightest
galaxy is positively correlated with the magnitude gap. The brightest galaxies
in FSs (called fossil galaxies) have stellar populations and star formation
histories which are similar to normal brightest cluster galaxies (BCGs).
However, at fixed group/cluster mass, the stellar masses of the fossil galaxies
are larger compared to normal BCGs, a fact that holds true over a wide range of
group/cluster masses. Moreover, the fossil galaxies are found to contain a
significant fraction of the total optical luminosity of the group/cluster
within 0.5R200, as much as 85%, compared to the non-fossils, which can have as
little as 10%. Our results suggest that FSs formed early and in the highest
density regions of the universe and that fossil galaxies represent the end
products of galaxy mergers in groups and clusters. The online FS catalog can be
found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added:
http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm
- …
