1,037 research outputs found
The present rate of Supernovae
We present and discuss the most recent determination of the rate of
Supernovae in the local Universe. A comparison with other results shows a
general agreement on the gross values but still significant differences on the
values of the rates of various SN rates in different kinds of galaxies. The
rate of SNe, used as a probe of Star Formation, confirms the young progenitor
scenario for SNII+Ib/c. The increasing diversity of SNe reflects also in the SN
yields which may affect the chemical evolution of the Galaxy but, because of
the limited statistics, we cannot estimate the contributions of the new
subtypes yet. It is also expected that in a few years observational
determinations of the SN rates at various look-back times will be available.Comment: 9 pages, Latex, 1 figure, To appear in the proceedings of the
conference "The Chemical Evolution of The Milky Way: Stars versus Clusters",
eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199
Constraints on the Massive Supernova Progenitors
Generally accepted scheme distinguishes two main classes of supernovae (SNe):
Ia resulting from the old stellar population (deflagration of a white dwarf in
close binary systems), and SNe of type II and Ib/c whose ancestors are young
massive stars (died in a core-collapse explosion). Concerning the latter, there
are suggestions that the SNe II are connected to early B stars, and SNe Ib/c to
isolated O or Wolf-Rayet (W-R) stars. However, little or no effort was made to
further separate SNe Ib from Ic. We have used assumed SN rates for different SN
types in spiral galaxies in an attempt to perform this task. If isolated
progenitor hypothesis is correct, our analysis indicates that SNe Ib result
from stars of main-sequence mass , while the progenitors of SNe Ic are more
massive stars with .
Alternatively, if the majority of SNe Ib/c appear in close binary systems
(CBs) then they would result from the same progenitor population as most of the
SNe II, i.e. early B stars with initial masses of order . Future observations of SNe at high-redshift () and
their rate will provide us with unique information on SN progenitors and
star-formation history of galaxies. At higher- (deeper in the cosmic past)
we expect to see the lack of type Ia events, i.e. the dominance of
core-collapse SNe. Better understanding of the stripped-envelope SNe (Ib/c),
and their potential use as distance indicators at high-, would therefore be
of great practical importance.Comment: 11 pages, 2 figures, accepted for publication in IJMP
The Asiago Supernova Catalogue- 10 years after
Ten years after the publication of the previous release, we present a new
edition of the Asiago Supernova Catalogue updated to December 31, 1998 and
containing data for 1447 supernovae and their parent galaxies\footnote{Tables 1
and 2 are only available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/Abstract.html}. In addition to list the data for a
large number of new SNe, we made an effort to search the literature for new
information on past SNe as well. We also tried to update and homogenize the
data for the parent galaxies. To allow a global view of the Catalogue, a few
descriptive figures and a summary table is reported. The present Catalogue is
intended as a large and modern database for statistical studies on the
supernova phenomenon.Comment: 6 pages. To be published in A&A supplement. Enclosed as postscript
files are the full lists in chronological (snean.ps) and R.A. (snear.ps)
order (to be published only in electronic form.
Nonequilibrium Kinetics of One-Dimensional Bose Gases
We study cold dilute gases made of bosonic atoms, showing that in the
mean-field one-dimensional regime they support stable out-of-equilibrium
states. Starting from the 3D Boltzmann-Vlasov equation with contact
interaction, we derive an effective 1D Landau-Vlasov equation under the
condition of a strong transverse harmonic confinement. We investigate the
existence of out-of-equilibrium states, obtaining stability criteria similar to
those of classical plasmas.Comment: 16 pages, 6 figures, accepted for publication in Journal of
Statistical Mechanics: Theory and Experimen
Revealing local failed supernovae with neutrino telescopes
We study the detectability of neutrino bursts from nearby direct black
hole-forming collapses (failed supernovae) at Megaton detectors. Due to their
high energetics, these bursts could be identified - by the time coincidence of
N >= 2 or N >= 3 events within a ~ 1 s time window - from as far as ~ 4-5 Mpc
away. This distance encloses several supernova-rich galaxies, so that failed
supernova bursts could be detected at a rate of up to one per decade,
comparable to the expected rate of the more common, but less energetic, neutron
star-forming collapses. Thus, the detection of a failed supernova within the
lifetime of a Mt detector is realistic. It might give the first evidence of
direct black hole formation, with important implications on the physics of this
phenomenon.Comment: LaTeX, 4 pages, 4 figures; minor changes to the text, results
unchange
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
Tomographic and 3-D analyses for extended, emission-line objects are applied
to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary
nebula NGC 7009, covered at twelve position angles. We derive the gas expansion
law, the diagnostics and ionic radial profiles, the distance and the central
star parameters, the nebular photo-ionization model and the spatial recovery of
the plasma structure and evolution. The Saturn Nebula (distance~1.4 kpc,
age~6000 yr, ionized mass~0.18 Mo) consists of several interconnected
components, characterized by different morphology, physical conditions,
excitation and kinematics. The internal shell, the main shell, the streams and
the ansae expand at V(exp)~4.0xR" km/s, the outer shell, the caps and the
equatorial pseudo-ring at V(exp)~3.15xR" km/s, and the halo at V(exp)~10 km/s.
We compare the radial distribution of the physical conditions and the line
fluxes observed in the eight sub-systems with the theoretical profiles coming
from the photo-ionization code CLOUDY, inferring that all the spectral
characteristics of NGC 7009 are explainable in terms of photo-ionization by the
central star, a hot (logT*~4.95) and luminous (log L*/Lo~3.70) 0.60--0.61 Mo
post--AGB star in the hydrogen-shell nuclear burning phase. The 3--D shaping of
the Saturn Nebula is discussed within an evolutionary scenario dominated by
photo-ionization and supported by the fast stellar wind: it begins with the
superwind ejection, passes through the neutral, transition phase (lasting ~
3000 yr), the ionization start (occurred ~2000 yr ago), and the full ionization
of the main shell (~1000 yr ago), at last reaching the present days: the whole
nebula is optically thin to the UV stellar flux, except the caps and the ansae.Comment: accepted for pub. in A&A, 28 pages, 14 figures, full text with
figures available at http://web.pd.astro.it/supern/ps/h4665.ps, movies on the
3D structure available at http://web.pd.astro.it/sabbadin
The Generation and Dissipation of Interstellar Turbulence - Results from Large Scale High Resolution Simulations
We study, by means of adaptive mesh refinement hydro- and
magnetohydrodynamical simulations that cover a wide range of scales (from kpc
to sub-parsec), the dimension of the most dissipative structures and the
injection scale of the turbulent interstellar gas, which we find to be about 75
pc, in agreement with observations. This is however smaller than the average
size of superbubbles, but consistent with significant density and pressure
changes in the ISM, which leads to the break-up of bubbles locally and hence to
injection of turbulence. The scalings of the structure functions are consistent
with log-Poisson statistics of supersonic turbulence where energy is dissipated
mainly through shocks. Our simulations are different from previous ones by
other authors as (i) we do not assume an isothermal gas, but have temperature
variations of several orders of magnitude and (ii) we have no artificial
forcing of the fluid with some ad hoc Fourier spectrum, but drive turbulence by
stellar explosions at the Galactic rate, self-regulated by density and
temperature thresholds imposed on the ISM gas.Comment: Five pages and three figures. Accepted for publication in
Astrophysical Journal (Letters
- …
