198 research outputs found

    5-(carbamoylmethylene)-oxazolidin-2-ones as a promising class of heterocycles inducing apoptosis triggered by increased ROS levels and mitochondrial dysfunction in breast and cervical cancer

    Get PDF
    Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use

    Thioalbamide, a thioamidated peptide from amycolatopsis alba, affects tumor growth and stemness by inducing metabolic dysfunction and oxidative stress

    Get PDF
    Thioalbamide, a thioamidated peptide biosynthesized by Amycolatopsis alba, is a thioviridamide-like molecule, and is part of a family of natural products representing a focus of biotechnological and pharmaceutical research in recent years due to their potent anti-proliferative and cytotoxic activities on malignant cells. Despite the high antitumor potential observed at nanomolar concentrations, the mechanisms underlying thioalbamide activity are still not known. In this work, the cellular effects induced by thioalbamide treatment on breast cancer cell lines were evaluated for the first time, highlighting the ability of this microbial natural peptide to induce mitochondrial dysfunction, oxidative stress, and apoptotic cell death. Furthermore, we demonstrate that thioalbamide can inhibit the propagation of cancer stem-like cells, which are strongly dependent on mitochondrial function and are responsible for chemotherapy resistance, metastasis, and tumor recurrence

    Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism

    Get PDF
    Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed “BMF”, has a statin-like properties, which blocks the action of the rate-limiting enzyme for mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl- CoA-reductase). Moreover, our results indicate that BMF functionally inhibits several key characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated signalling pathways (STAT1/3, Notch and Wnt/ beta-catenin) targeting Rho-GDI-signalling. In addition, BMF metabolically inhibited mitochondrial respiration (OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we show that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy

    Cholesterol and mevalonate : two metabolites involved in breast cancer progression and drug resistance through the ERRα pathway

    Get PDF
    Breast cancer is the second greatest cause of cancer-related death in women. Resistance to endocrine treatments or chemotherapy is a limiting drawback. In this context, this work aims to evaluate the effects of cholesterol and mevalonate during tumor progression and their contribution in the onset of resistance to clinical treatments in use today. In this study, we demonstrated that cholesterol and mevalonate treatments were able to activate the estrogen-related receptor alpha (ERRα) pathway, increasing the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ERbB2/human epithelial receptor (HER2), tumor protein D52 (TPD52), and NOTCH2 proteins in breast cancer cells. The activation of this pathway is shown to be responsible for intense metabolic switching, higher proliferation rates, sustained motility, the propagation of cancer stem-like cells (CSCs), and lipid droplet formation. All of these events are related to greater tumor propagation, aggressiveness, and drug resistance. Furthermore, the activation and expression of proteins induced by the treatment with cholesterol or mevalonate are consistent with those obtained from the MCF-7/TAMr cell line, which is largely used as a breast cancer model of acquired endocrine therapy resistance. Altogether, our data indicate that cholesterol and mevalonate are two metabolites implicated in breast cancer progression, aggressiveness, and drug resistance, through the activation of the ERRα pathway. Our findings enable us to identify the ERRα receptor as a poor prognostic marker in patients with breast carcinoma, suggesting the correlation between cholesterol/mevalonate and ERRα as a new possible target in breast cancer treatment

    Carbazole Derivatives: A Promising Scenario for Breast Cancer Treatment

    Get PDF
    Chemotherapeutics used in cancer treatment may elicit pleiotropic effects interfering, for instance, directly on DNA metabolism or on endoplasmic organelles functions. Recently there has been a trend towards the use of molecular-targeted therapies as alternative treatments of cancer, arising from the need to overcome the onset of undesired side effects or drug-resistance. Thus, a major challenge is the design and synthesis of new agents able to interact with specific cellular components, often over-expressed or altered in cancerous cells, such as telomerase and topoisomerase or protein kinases, with reduced toxicity at effective doses. The main molecular targets for the development of new anticancer drugs include: cell surface receptors, signal transduction pathways, enzymes, gene transcription, ubiquitin-proteasome/heat shock proteins, and anti-angiogenic agents. Several natural or synthetic polycyclic molecules with carbazolic nucleus, which show attractive drug-like properties, were identified with the aim to increase their biological activities and their specificity, obtaining cytotoxic agents effective in a panel of cancer cell lines. The cytotoxic profile of these compounds has been assessed using several in vitro assays as, for instance, MTT, colony formation, and flow cytometry assays and some of these compounds showed an interesting profile at sub-micromolar concentrations. The usefulness of some carbazole derivatives has been demonstrated, as well, in preclinical studies. - See more at: http://www.eurekaselect.com/132941/article#sthash.sPhGDh36.dpu

    Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny

    Get PDF
    The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors

    IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains Helminth Chronicity.

    Get PDF
    Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity. Indeed in mice deficient for IL-1β (IL-1β(-/-)), or treated with the soluble IL-1βR antagonist, Anakinra, helminth infection results in enhanced type 2 immunity and accelerated parasite expulsion. IL-1β acts to decrease production of IL-25 and IL-33 at early time points following infection and parasite rejection was determined to require IL-25. Taken together, these data indicate that Hp promotes the release of host-derived IL-1β that suppresses the release of innate cytokines, resulting in suboptimal type 2 immunity and allowing pathogen chronicity

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations
    corecore