1,002 research outputs found
Gravitational anomalies in a dispersive approach
The gravitational anomalies in two dimensions, specifically the Einstein
anomaly and the Weyl anomaly, are fully determined by means of dispersion
relations. In this approach the anomalies originate from the peculiar infrared
feature of the imaginary part of the relevant formfactor which approaches a
-function singularity at zero momentum squared when .Comment: 10 page
Ultraviolet Complete Quantum Gravity
An ultraviolet complete quantum gravity theory is formulated in which vertex
functions in Feynman graphs are entire functions and the propagating graviton
is described by a local, causal propagator. The cosmological constant problem
is investigated in the context of the ultraviolet complete quantum gravity.Comment: 11 pages, no figures. Changes to text. Results remain the same.
References added. To be published in European Physics Journal Plu
Conformal Supergravity in Twistor-String Theory
Conformal supergravity arises in presently known formulations of
twistor-string theory either via closed strings or via gauge-singlet open
strings. We explore this sector of twistor-string theory, relating the relevant
string modes to the particles and fields of conformal supergravity. We also use
the twistor-string theory to compute some tree level scattering amplitudes with
supergravitons, and compare to expectations from conformal supergravity. Since
the supergravitons interact with the same coupling constant as the Yang-Mills
fields, conformal supergravity states will contribute to loop amplitudes of
Yang-Mills gluons in these theories. Those loop amplitudes will therefore not
coincide with the loop amplitudes of pure super Yang-Mills theory.Comment: 43 pages harvmac tex, added footnote to introductio
General structure of the graviton self-energy
The graviton self-energy at finite temperature depends on fourteen structure
functions. We show that, in the absence of tadpoles, the gauge invariance of
the effective action imposes three non-linear relations among these functions.
The consequences of such constraints, which must be satisfied by the thermal
graviton self-energy to all orders, are explicitly verified in general linear
gauges to one loop order.Comment: 4 pages, minor corrections of typo
Thermal one- and two-graviton Green's functions in the temporal gauge
The thermal one- and two-graviton Green's function are computed using a
temporal gauge. In order to handle the extra poles which are present in the
propagator, we employ an ambiguity-free technique in the imaginary-time
formalism. For temperatures T high compared with the external momentum, we
obtain the leading T^4 as well as the subleading T^2 and log(T) contributions
to the graviton self-energy. The gauge fixing independence of the leading T^4
terms as well as the Ward identity relating the self-energy with the one-point
function are explicitly verified. We also verify the 't Hooft identities for
the subleading T^2 terms and show that the logarithmic part has the same
structure as the residue of the ultraviolet pole of the zero temperature
graviton self-energy. We explicitly compute the extra terms generated by the
prescription poles and verify that they do not change the behavior of the
leading and sub-leading contributions from the hard thermal loop region. We
discuss the modification of the solutions of the dispersion relations in the
graviton plasma induced by the subleading T^2 contributions.Comment: 17 pages, 5 figures. Revised version to be published in Phys. Rev.
Trace Anomaly and Backreaction of the Dynamical Casimir Effect
The Casimir energy for massless scalar field which satisfies priodic boundary
conditions in two-dimensional domain wall background is calculated by making
use of general properties of renormalized stress-tensor. The line element of
domain wall is time dependent, the trace anomaly which is the nonvanishing
for a conformally invariant field after renormalization,
represent the back reaction of the dynamical Casimir effect.Comment: 8 pages, no figures, typos corrected, discussion added, has been
accepted for the publication in GR
The graviton self-energy in thermal quantum gravity
We show generally that in thermal gravity, the one-particle irreducible
2-point function depends on the choice of the basic graviton fields. We derive
the relevant properties of a physical graviton self-energy, which is
independent of the parametrization of the graviton field. An explicit
expression for the graviton self-energy at high-temperature is given to
one-loop order.Comment: 13 pages, 2 figure
Casimir Effect, Achucarro-Ortiz Black Hole and the Cosmological Constant
We treat the two-dimensional Achucarro-Ortiz black hole (also known as (1+1)
dilatonic black hole) as a Casimir-type system. The stress tensor of a massless
scalar field satisfying Dirichlet boundary conditions on two one-dimensional
"walls" ("Dirichlet walls") is explicitly calculated in three different vacua.
Without employing known regularization techniques, the expression in each
vacuum for the stress tensor is reached by using the Wald's axioms. Finally,
within this asymptotically non-flat gravitational background, it is shown that
the equilibrium of the configurations, obtained by setting Casimir force to
zero, is controlled by the cosmological constant.Comment: 20 pages, LaTeX, minor corrections, comments and clarifications
added, version to appear in Phys. Rev.
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
Two-loop renormalization of gaugino masses in general supersymmetric gauge models
We calculate the two-loop renormalization group equations for the running
gaugino masses in general SUSY gauge models, improving our previous result. We
also study its consequence to the unification of the gaugino masses in the SUSY
SU(5) model. The two-loop correction to the one-loop relation
is found to be of the order of a few \%.Comment: 8 pages + 1 figure (omitted),KEK-TH-371 / UT-65
- …
