2,918 research outputs found

    Globular cluster-massive black hole interactions in galactic centers

    Get PDF
    Many, if not all, galaxies host massive compact objects at their centers. They are present as singularities (super massive black holes) or high density star clusters (nuclear tar clusters). In some cases they coexist, and interact more or less strongly. In this short paper I will talk of the 'merger' globular cluster scenario, which has been shown in the past to be an explanation of the substantial mass accumulation in galactic centers. In particular, I will present the many astrophysical implications of such scenario pointing the attention on the mutual feedback of orbitally decaying globular clusters with massive and super massive black holes.Comment: 4 pages, 1 fiugre. Presented at the MODEST 16/Cosmic Lab conference in Bologna, Italy, April 18-22 2016. To be pusblshed in Mem. S.A.It. Conference Serie

    Galactic nuclear activity induced by globular cluster merging

    Get PDF
    The interpretation of the difference observed between the radial distribution of globular clusters and that of halo-bulge stars in elliptical galaxies is discussed in terms of evolution of their globular cluster systems. I present a short summary of the evidence that dynamical evolution of globular cluster systems is not only able to explain the flattening of their distribution toward the galactic center, but also it may have played an important role on the primordial activity of the parent galaxy.Comment: Presented at the MPIA Workshop on Modes of Star Formation and the Origin of Field Populations, in press in the ASP Conf. Ser., Grebel and Brandner eds.; 7 pages including 2 eps figures and 1 tabl

    An efficient parallel tree-code for the simulation of self-gravitating systems

    Get PDF
    We describe a parallel version of our tree-code for the simulation of self-gravitating systems in Astrophysics. It is based on a dynamic and adaptive method for the domain decomposition, which exploits the hierarchical data arrangement used by the tree-code. It shows low computational costs for the parallelization overhead -- less than 4% of the total CPU-time in the tests done -- because the domain decomposition is performed 'on the fly' during the tree setting and the portion of the tree that is local to each processor 'enriches' itself of remote data only when they are actually needed. The performances of an implementation of the parallel code on a Cray T3E are presented and discussed. They exhibit a very good behaviour of the speedup (=15 with 16 processors and 10^5 particles) and a rather low load unbalancing (< 10% using up to 16 processors), achieving a high computation speed in the forces evaluation (>10^4 particles/sec with 8 processors).Comment: 10 pages, 8 figures, LaTeX2e, A&A class file needed (included), submitted to A&A; corrected abstract word wrappin

    Star Clusters and Super Massive Black Holes: High Velocity Stars Production

    Full text link
    One possible origin of high velocity stars in the Galaxy is that they are the product of the interaction of binary systems and supermassive black holes. We investigate a new production channel of high velocity stars as due to the close interaction between a star cluster and supermassive black holes in galactic centres. The high velocity acquired by some stars of the cluster comes from combined effect of extraction of their gravitational binding energy and from the slingshot due to the interaction with the black holes. Stars could reach a velocity sufficient to travel in the halo and even overcome the galactic potential well, while some of them are just stripped from the cluster and start orbiting around the galactic centre.Comment: 2 pages, 1 figure. Presented at the MODEST 16/Cosmic Lab conference in Bologna, Italy, April 18-22 2016. To be pusblshed in Mem. S.A.It. Conference Serie
    corecore