19 research outputs found
Interdependence between confirmed and discarded cases of dengue, chikungunya and Zika viruses in Brazil: A multivariate time-series analysis.
The co-circulation of different arboviruses in the same time and space poses a significant threat to public health given their rapid geographic dispersion and serious health, social, and economic impact. Therefore, it is crucial to have high quality of case registration to estimate the real impact of each arboviruses in the population. In this work, a Vector Autoregressive (VAR) model was developed to investigate the interrelationships between discarded and confirmed cases of dengue, chikungunya, and Zika in Brazil. We used data from the Brazilian National Notifiable Diseases Information System (SINAN) from 2010 to 2017. There were three peaks in the series of dengue notification in this period occurring in 2013, 2015 and in 2016. The series of reported cases of both Zika and chikungunya reached their peak in late 2015 and early 2016. The VAR model shows that the Zika series have a significant impact on the dengue series and vice versa, suggesting that several discarded and confirmed cases of dengue could actually have been cases of Zika. The model also suggests that the series of confirmed and discarded chikungunya cases are almost independent of the cases of Zika, however, affecting the series of dengue. In conclusion, co-circulation of arboviruses with similar symptoms could have lead to misdiagnosed diseases in the surveillance system. We argue that the routinely use of mathematical and statistical models in association with traditional symptom-surveillance could help to decrease such errors and to provide early indication of possible future outbreaks. These findings address the challenges regarding notification biases and shed new light on how to handle reported cases based only in clinical-epidemiological criteria when multiples arboviruses co-circulate in the same population
Impact of respiratory therapy in vital capacity and functionality of patients undergoing abdominal surgery
Temporal, spatial and spatiotemporal analysis of the occurrence of visceral leishmaniasis in humans in the City of Birigui, State of São Paulo, from 1999 to 2012
Introduction In 1999, Birigui and Araçatuba were the first municipalities in the State of São Paulo to present autochthonous cases of visceral leishmaniasis in humans (VLH). The aim of this study was to describe the temporal, spatial and spatiotemporal behaviors of VLH in Birigui. Methods Secondary data were obtained from the Notifiable Diseases Information System from 1999 to 2012. The incidence, mortality and case fatality rates by sex and age were calculated. The cases of VLH were geocoded and grouped according to census tracts. Local empirical Bayesian incidence rates were calculated. The existence of spatial and spatiotemporal clusters was investigated using SaTScan software. Results There were 156 confirmed cases of autochthonous VLH. The incidence rate was higher in the 0-4-year-old children, and the mortality and case fatality rates were higher in people aged 60 years and older. The peaks of incidence occurred in 2006 and 2011. The Bayesian rates identified the presence of VLH in all of the census tracts in the municipality; however, spatial and spatiotemporal clusters were found in the central area of the municipality. Conclusions Birigui, located in the Araçatuba region, has recently experienced increasing numbers of VLH cases; this increase is contrary to the behavior observed over the entire region, which has shown a decreasing trend in the number of VLH cases. The observations that the highest incidence is in children 0-4 years old and the highest mortality is in people 60 years and older are in agreement with the expected patterns of VLH.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade de São Paulo Escola de Enfermagem Curso de Graduação em EnfermagemUniversidade de São Paulo Faculdade de Saúde Pública Programa de Pós-Graduação em Saúde PúblicaUniversidade Estadual Paulista Júlio de Mesquita Filho Programa de Pós-Graduação em Ciência AnimalRegional de Araçatuba Secretaria de Estado de Saúde de São Paulo Superintendência de Controle de EndemiasSecretaria de Estado de Saúde de São Paulo Superintendência de Controle de Endemias Laboratório de Vetores de São José do Rio PretoUniversidade de São Paulo Faculdade de Saúde Pública Departamento de EpidemiologiaUniversidade Estadual Paulista Júlio de Mesquita Filho Programa de Pós-Graduação em Ciência Anima
Spring-mediated skull expansion: overall effects in sutural and parasutural areas. An experimental study in rabbits
Interdependence between confirmed and discarded cases of dengue, chikungunya and Zika viruses in Brazil: A multivariate time-series analysis
AbstractThe co-circulation of different arboviruses in the same time and space poses a significant threat to public health given their rapid geographic dispersion and serious health, social, and economic impact. Therefore, it is crucial to have high quality of case registration to estimate the real impact of each arboviruses in the population. In this work, a Vector Autoregressive (VAR) model was developed to investigate the interrelationships between discarded and confirmed cases of dengue, chikungunya, and Zika in Brazil. We used data from the Brazilian National Notifiable Diseases Information System (SINAN) from 2010 to 2017. There were two waves in the series of dengue notification in this period, one occurring in 2013 and the second in 2015. The series of reported cases of both Zika and chikungunya reached their peak in late 2015 and early 2016. The VAR model shows that the Zika series have a significant impact on the dengue series and vice versa, suggesting that several discarded and confirmed cases of dengue could actually have been cases of Zika. The model also suggests that the series of confirmed chikungunya cases is almost independent of the cases of dengue and Zika. In conclusion, co-circulation of arboviruses with similar symptoms could lead to misdiagnosed diseases in the surveillance system. We argue that the use of mathematical and statistical models routinely in association with traditional symptom-surveillance could help to decrease such errors and to provide early indication of possible future outbreaks. These findings address the challenges regarding notification biases and shed new light on how to handle reported cases based only in clinical-epidemiological criteria when multiples arboviruses co-circulate in the same population.Author summaryArthropod-borne viruses (arboviruses) transmission is a growing health problem worldwide. The real epidemiological impact of the co-circulation of different arboviruses in the same urban spaces is a recent phenomenon and there are many issues to explore. One of this issue is the misclassification due to the scarce availability of confirmatory laboratory tests. This establishes a challenge to identify, distinguish and estimate the number of infections when different arboviruses co-circulate. We propose the use of multivariate time series analysis to understand how the weekly notification of suspected cases of dengue, chikungunya and Zika, in Brazil, affected each other. Our results suggest that the series of Zika significantly impact on the series of dengue and vice versa, indicating that several discarded and confirmed cases of dengue might actually have been Zika cases. The results also suggest that the series of confirmed cases of chikungunya are almost independent of those of dengue and Zika. Our findings shed light on yet hidden aspects on the co-circulation of these three viruses based on reported cases. We believe the present work provides a new perspective on the longitudinal analysis of arboviruses transmission and call attention to the challenge in dealing with biases in the notification of multiple arboviruses that circulate in the same urban environment.</jats:sec
Interdependence between confirmed and discarded cases of dengue, chikungunya and Zika viruses in Brazil: A multivariate time-series analysis
AbstractThe co-circulation of different arboviruses in the same time and space poses a significant threat to public health given their rapid geographic dispersion and serious health, social, and economic impact. Therefore, it is crucial to have high quality of case registration to estimate the real impact of each arboviruses in the population. In this work, a Vector Autoregressive (VAR) model was developed to investigate the interrelationships between discarded and confirmed cases of dengue, chikungunya, and Zika in Brazil. We used data from the Brazilian National Notifiable Diseases Information System (SINAN) from 2010 to 2017. There were three peaks in the series of dengue notification in this period occurring in 2013, 2015 and in 2016. The series of reported cases of both Zika and chikungunya reached their peak in late 2015 and early 2016. The VAR model shows that the Zika series have a significant impact on the dengue series and vice versa, suggesting that several discarded and confirmed cases of dengue could actually have been cases of Zika. The model also suggests that the series of confirmed and discarded chikungunya cases are almost independent of the cases of Zika, however, affecting the series of dengue. In conclusion, co-circulation of arboviruses with similar symptoms could have lead to misdiagnosed diseases in the surveillance system. We argue that the routinely use of mathematical and statistical models in association with traditional symptom-surveillance could help to decrease such errors and to provide early indication of possible future outbreaks. These findings address the challenges regarding notification biases and shed new light on how to handle reported cases based only in clinical-epidemiological criteria when multiples arboviruses co-circulate in the same population.Author summaryArthropod-borne viruses (arboviruses) transmission is a growing health problem worldwide. The real epidemiological impact of the co-circulation of different arboviruses in the same urban spaces is a recent phenomenon and there are many issues to explore. One of them is the misclassification due to the scarce availability of confirmatory laboratory tests. This establishes a challenge to identify, distinguish and estimate the number of infections when different arboviruses co-circulate. We propose the use of multivariate time series analysis to understand how the weekly notification of suspected cases of dengue, chikungunya and Zika, in Brazil, affected each other. Our results suggest that the series of Zika significantly impact on the series of dengue and vice versa, indicating that several discarded and confirmed cases of dengue might actually have been Zika cases. The results also suggest that the series of confirmed cases of chikungunya are almost independent of those of dengue and Zika. Our findings shed light on yet hidden aspects on the co-circulation of these three viruses based on reported cases. We believe the present work provides a new perspective on the longitudinal analysis of arboviruses transmission and call attention to the challenge in dealing with biases in case notifications when multiple arboviruses circulate in the same urban environment.</jats:sec
