198 research outputs found
Interpreting Attoclock Measurements of Tunnelling Times
Resolving in time the dynamics of light absorption by atoms and molecules,
and the electronic rearrangement this induces, is among the most challenging
goals of attosecond spectroscopy. The attoclock is an elegant approach to this
problem, which encodes ionization times in the strong-field regime. However,
the accurate reconstruction of these times from experimental data presents a
formidable theoretical challenge. Here, we solve this problem by combining
analytical theory with ab-initio numerical simulations. We apply our theory to
numerical attoclock experiments on the hydrogen atom to extract ionization time
delays and analyse their nature. Strong field ionization is often viewed as
optical tunnelling through the barrier created by the field and the core
potential. We show that, in the hydrogen atom, optical tunnelling is
instantaneous. By calibrating the attoclock using the hydrogen atom, our method
opens the way to identify possible delays associated with multielectron
dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe
Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway
Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. Conclusion. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies
Ultra-fast laser modification of poly-lactic acid (PLA) -towards enhanced biocompatibility
peer reviewedIn this study, the interaction was investigated of femtosecond laser radiation (pulse duration τ = 130 fs, wavelength λ = 800 nm) with poly-lactic acid (PLA) 2D scaffolds. Two sets of laser fluences (F) and scanning speed (V) values were applied to PLA matrices -F = 1.66 J/cm2, V = 3.8 mm/s, and F = 0.83 J/cm2, V = 3.8 mm/s. The PLA samples thickness, roughness, and water contact angle (WCA) were characterized before and after the laser structuring. The fs-induced micro structures were investigated by SEM, EDX, and FTIR analyses. Preliminary cell fibroblast studies were performed. The results obtained clearly show that a precise laser surface structuring could orient the cells matrix ingrowth and thus make PLA bone tissue engineering interbody future application more successful and adaptable to the personal needs of the recipients
Analysis of femtosecond microstructured Poly Lactic Acid temporary cell scaffolds, spin-coated with Chitosan or Hydroxyapatite
peer reviewedTemporary biocompatible and degradable cell scaffolds - the new weapon of tissue engineering in the face of personalized medicine are emerging as one of the most powerful tools for guided self-regeneration of injured, diseased or malfunctioning tissues. In the current study, CPA Ti:sapphire fs laser system (τ = 150 fs, λ = 800 nm, ѵ=0.5 kHz) was used for surface modification of Poly Lactic Acid (PLA) temporary cell scaffolds at fluence F = 0.8 J/cm2 and scanning velocity V = 3.8 mm/s. Additional thin layer of chitosan (Ch)/hydroxyapatite (HAp) (up to 30 ÷ 60 nm thickness) was deposited on the laser-modified PLA matrices by spin coating method for cell scaffolds surface functionalization. In order to observe the complementary impact of fs structuring and spin coating on the PLA scaffolds’ properties, both surface modification methods were applied on the prepared by compression molding PLA samples. Each laser processed sample was analyzed in respect of the corresponding control – laser-treated and untreated PLA surface, spin-coated with Ch or HAp. The microstructured scaffolds were characterized by SEM, EDX, FTIR, roughness, and WCA analyses. The results obtained from characterization of scaffold properties, show that such combined methods application for functionalization of the bone PLA scaffolds could be applied to improve the biocompatibility of the as created PLA-chitosan and PLA- hydroxyapatite hybrid cell matrices
Whole body MR imaging in ankylosing spondylitis: a descriptive pilot study in patients with suspected early and active confirmed ankylosing spondylitis
BACKGROUND: Ankylosing spondylitis is a chronic inflammatory rheumatic disorder which usually begins in early adulthood. The diagnosis is often delayed by many years. MR imaging has become the preferred imaging method for detection of early inflammation of the axial skeleton in ankylosing spondylitis. The goal of this study was to assess the frequency and distribution of abnormalities on whole body MR imaging in patients with suspected early ankylosing spondylitis and with active confirmed ankylosing spondylitis. METHODS: Ten patients with suspected early ankylosing spondylitis and ten patients with confirmed ankylosing spondylitis were enrolled. On an 18-channel MR system, coronal and sagittal T1 weighted and STIR sequences were acquired covering the entire spine, sacrum, anterior chest wall, shoulder girdle, and pelvis. The total examination time was 30 minutes. RESULTS: In both groups inflammatory lesions of the lower thoracic spine were frequent (number of patients with suspected early/confirmed ankylosing spondylitis: 7/9). In confirmed ankylosing spondylitis the upper thoracic spine (3/6) and the lumbar spine (4/8) were more commonly involved. The inferior iliac quadrant of the sacroiliac joints was frequently altered in both groups (8/8). The superior iliac (2/5), inferior sacral (6/10) and superior sacral (3/6) quadrants were more frequently affected in confirmed ankylosing spondylitis. Abnormalities of the manubriosternal joint (2/4), the sternoclavicular joints (1/2) and hip joint effusion (4/3) were also seen. CONCLUSION: In both suspected early ankylosing spondylitis and confirmed ankylosing spondylitis, whole body MR examinations frequently demonstrate inflammatory lesions outside the sacroiliac joints. These lesions are similarly distributed but occur less frequently in suspected early compared to confirmed ankylosing spondylitis. Due to the small sample size in this pilot study these results need to be confirmed in larger studies with this emerging technique
Validating the concept of mutational signatures with isogenic cell models.
The diversity of somatic mutations in human cancers can be decomposed into individual mutational signatures, patterns of mutagenesis that arise because of DNA damage and DNA repair processes that have occurred in cells as they evolved towards malignancy. Correlations between mutational signatures and environmental exposures, enzymatic activities and genetic defects have been described, but human cancers are not ideal experimental systems-the exposures to different mutational processes in a patient's lifetime are uncontrolled and any relationships observed can only be described as an association. Here, we demonstrate the proof-of-principle that it is possible to recreate cancer mutational signatures in vitro using CRISPR-Cas9-based gene-editing experiments in an isogenic human-cell system. We provide experimental and algorithmic methods to discover mutational signatures generated under highly experimentally-controlled conditions. Our in vitro findings strikingly recapitulate in vivo observations of cancer data, fundamentally validating the concept of (particularly) endogenously-arising mutational signatures
Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin
The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention
Incorporating assessment of the cervical facet joints in the modified Stoke ankylosing spondylitis spine score is of additional value in the evaluation of spinal radiographic outcome in ankylosing spondylitis
Association between age at disease onset of anti-neutrophil cytoplasmic antibody-associated vasculitis and clinical presentation and short-term outcomes
Objectives: ANCA-associated vasculitis (AAV) can affect all age groups. We aimed to show that differences in disease presentation and 6 month outcome between younger- A nd older-onset patients are still incompletely understood. Methods: We included patients enrolled in the Diagnostic and Classification Criteria for Primary Systemic Vasculitis (DCVAS) study between October 2010 and January 2017 with a diagnosis of AAV. We divided the population according to age at diagnosis: <65 years or ≥65 years. We adjusted associations for the type of AAV and the type of ANCA (anti-MPO, anti-PR3 or negative). Results: A total of 1338 patients with AAV were included: 66% had disease onset at <65 years of age [female 50%; mean age 48.4 years (s.d. 12.6)] and 34% had disease onset at ≥65 years [female 54%; mean age 73.6 years (s.d. 6)]. ANCA (MPO) positivity was more frequent in the older group (48% vs 27%; P = 0.001). Younger patients had higher rates of musculoskeletal, cutaneous and ENT manifestations compared with older patients. Systemic, neurologic,cardiovascular involvement and worsening renal function were more frequent in the older-onset group. Damage accrual, measured with the Vasculitis Damage Index (VDI), was significantly higher in older patients, 12% of whom had a 6 month VDI ≥5, compared with 7% of younger patients (P = 0.01). Older age was an independent risk factor for early death within 6 months from diagnosis [hazard ratio 2.06 (95% CI 1.07, 3.97); P = 0.03]. Conclusion: Within 6 months of diagnosis of AAV, patients >65 years of age display a different pattern of organ involvement and an increased risk of significant damage and mortality compared with younger patients
- …
