166 research outputs found

    A radio Search for high redshift HI absorption

    Get PDF
    Ground based optical observations have yielded considerable information on the statistics of damped-lyman alpha systems. In particular these systems are known to be the dominant repository of the observed neutral gas at high redshift. However, particularly at high redshift, there is the possibility that optical observations could be biased due to the exclusion of damped-lyman alpha systems that contain moderate to significant amounts of dust. Independent observational constraints on the neutral hydrogen content at high redshifts and the amount of dust in high redshift systems can be obtained from a radio search against the bright lobes of distant radio galaxies (which is less affected by the presence of dust in foreground damped-lyman alpha systems). We describe here a pilot radio survey along the line of sight to a small sample of high redshift radio galaxies, and also present some preliminary results. The survey uses a novel observing mode at the WSRT which enables one to make sensitive searches of a large redshift interval in a modest amount of telescope time.Comment: A version with figures is available at http://www.nfra.nl/~chengalu/ To appear in "Cold Gas at High Redshift", Eds. M.Bremer et al. (Kluwer, Dordrecht

    A massive reservoir of low-excitation molecular gas at high redshift

    Full text link
    Molecular hydrogen is an important component of galaxies because it fuels star formation and accretion onto AGN, the two processes that generate the large infrared luminosities of gas-rich galaxies. Observations of spectral-line emission from the tracer molecule CO are used to probe the properties of this gas. But the lines that have been studied in the local Universe, mostly the lower rotational transitions of J = 1-0 and J = 2-1, have hitherto been unobservable in high-redshift galaxies. Instead, higher transitions have been used, although the densities and temperatures required to excite these higher transitions may not be reached by much of the gas. As a result, past observations may have underestimated the total amount of molecular gas by a substantial amount. Here we report the discovery of large amounts of low-excitation molecular gas around the infrared-luminous quasar, APM 08279+5255 at z = 3.91, using the two lowest excitation lines of 12CO (J = 1-0 and J = 2-1). The maps confirm the presence of hot and dense gas near the nucleus, and reveal an extended reservoir of molecular gas with low excitation that is 10 to 100 times more massive than the gas traced by higher-excitation observations. This raises the possibility that significant amounts of low-excitation molecular gas may lurk in the environments of high-redshift (z > 3) galaxies.Comment: To appear as a Letter to Nature, 4th January 200

    Molecular Gas in the Host Galaxy of a Quasar at Redshift z=6.42

    Full text link
    Observations of the molecular gas phase in quasar host galaxies provide fundamental constraints on galaxy evolution at the highest redshifts. Molecular gas is the material out of which stars form; it can be traced by spectral line emission of carbon--monoxide (CO). To date, CO emission has been detected in more than a dozen quasar host galaxies with redshifts (z) larger 2, the record holder being at z=4.69. At these distances the CO lines are shifted to longer wavelengths, enabling their observation with sensitive radio and millimetre interferometers. Here we present the discovery of CO emission toward the quasar SDSS J114816.64+525150.3 (hereafter J1148+5251) at a redshift of z=6.42, when the universe was only 1/16 of its present age. This is the first detection of molecular gas at the end of cosmic reionization. The presence of large amounts of molecular gas (M(H_2)=2.2e10 M_sun) in an object at this time demonstrates that heavy element enriched molecular gas can be generated rapidly in the earliest galaxies.Comment: 12 pages, 2 figures. To appear in Nature, July, 200

    The Discovery of Gas-Rich, Dusty Starbursts in Luminous Reddened Quasars at z2.5z\sim2.5 with ALMA

    Get PDF
    We present ALMA observations of cold dust and molecular gas in four high-luminosity, heavily reddened (AV2.56_{\rm{V}} \sim 2.5-6 mag) Type 1 quasars at z2.5z\sim2.5 with virial MBH1010_{\rm{BH}} \sim 10^{10}M_\odot, to test whether dusty, massive quasars represent the evolutionary link between submillimetre bright galaxies (SMGs) and unobscured quasars. All four quasars are detected in both the dust continuum and in the 12^{12}CO(3-2) line. The mean dust mass is 6×\times108^{8}M_\odot assuming a typical high redshift quasar spectral energy distribution (T=41K, β\beta=1.95 or T=47K, β\beta=1.6). The implied star formation rates are very high - \gtrsim1000 M_\odot yr1^{-1} in all cases. Gas masses estimated from the CO line luminosities cover \sim1-5×1010\times10^{10}(αCO/0.8\alpha_{\rm{CO}} / 0.8)M_\odot and the gas depletion timescales are very short - 520\sim5-20Myr. A range of gas-to-dust ratios is observed in the sample. We resolve the molecular gas in one quasar - ULASJ2315++0143 (z=2.561z=2.561) - which shows a strong velocity gradient over \sim20 kpc. The velocity field is consistent with a rotationally supported gas disk but other scenarios, e.g. mergers, cannot be ruled out at the current resolution of these data. In another quasar - ULASJ1234+0907 (z=2.503z=2.503) - we detected molecular line emission from two millimetre bright galaxies within 200 kpc of the quasar, suggesting that this quasar resides in a significant over-density. The high detection rate of both cold dust and molecular gas in these sources, suggests that reddened quasars could correspond to an early phase in massive galaxy formation associated with large gas reservoirs and significant star formation.MB acknowledges funding from the UK Science and Technology Facilities Council (STFC) via an Ernest Rutherford Fellowship. GJ is grateful for support from NRAO through the Grote Reber Doctoral Fellowship Program. RGM and PCH acknowledge funding from STFC via the Institute of Astronomy, Cambridge Consolidated Grant. SA-Z acknowledges support from Peterhouse, Cambridge

    Imaging the cold molecular gas in SDSS J1148 + 5251 at z = 6.4

    Get PDF
    We present Karl G. Jansky Very Large Array (VLA) observations of the CO (J=21J = 2 \rightarrow 1) line emission towards the z=6.419z = 6.419 quasar SDSS J114816.64+525150.3114816.64+525150.3 (J1148+52511148+5251). The molecular gas is found to be marginally resolved with a major axis of 0.9"0.9" (consistent with previous size measurements of the CO (J=76J = 7 \rightarrow 6) emission). We observe tentative evidence for extended line emission towards the south west on a scale of ~1.4"1.4", but this is only detected at 3.3σ3.3\sigma significance and should be confirmed. The position of the molecular emission region is in excellent agreement with previous detections of low frequency radio continuum emission as well as [C ii] line and thermal dust continuum emission. These CO (J=21J = 2 \rightarrow 1) observations provide an anchor for the low excitation part of the molecular line SED. We find no evidence for extended low excitation component, neither in the spectral line energy distribution nor the image. We fit a single kinetic gas temperature model of 50 K. We revisit the gas and dynamical masses in light of this new detection of a low order transition of CO, and confirm previous findings that there is no extended reservoir of cold molecular gas in J1148+52511148+5251, and that the source departs substantially from the low zz relationship between black hole mass and bulge mass. Hence, the characteristics of J1148+52511148+5251 at z=6.419z = 6.419 are very similar to zz~22 quasars, in the lack of a diffuse cold gas reservoir and kpc-size compactness of the star forming region.IIS thanks the Science & Technology Facilities Council for a studentship.This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society (c): 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved

    Semi-analytical approach to magnetized temperature autocorrelations

    Full text link
    The cosmic microwave background (CMB) temperature autocorrelations, induced by a magnetized adiabatic mode of curvature inhomogeneities, are computed with semi-analytical methods. As suggested by the latest CMB data, a nearly scale-invariant spectrum for the adiabatic mode is consistently assumed. In this situation, the effects of a fully inhomogeneous magnetic field are scrutinized and constrained with particular attention to harmonics which are relevant for the region of Doppler oscillations. Depending on the parameters of the stochastic magnetic field a hump may replace the second peak of the angular power spectrum. Detectable effects on the Doppler region are then expected only if the magnetic power spectra have quasi-flat slopes and typical amplitude (smoothed over a comoving scale of Mpc size and redshifted to the epoch of gravitational collapse of the protogalaxy) exceeding 0.1 nG. If the magnetic energy spectra are bluer (i.e. steeper in frequency) the allowed value of the smoothed amplitude becomes, comparatively, larger (in the range of 20 nG). The implications of this investigation for the origin of large-scale magnetic fields in the Universe are discussed. Connections with forthcoming experimental observations of CMB temperature fluctuations are also suggested and partially explored.Comment: 40 pages, 13 figure

    H I 21-cm Cosmology and the Bispectrum: Closure Diagnostics in Massively Redundant Interferometric Arrays

    Get PDF
    New massively redundant low frequency arrays allow for a novel investigation of closure relations in interferometry. We employ commissioning data from the Hydrogen Epoch of Reionization Array to investigate closure quantities in this densely packed grid array of 14m antennas operating at 100 MHz to 200 MHz. We investigate techniques that utilize closure phase spectra for redundant triads to estimate departures from redundancy for redundant baseline visibilities. We find a median absolute deviation from redundancy in closure phase across the observed frequency range of about 4.5deg. This value translates into a non-redundancy per visibility phase of about 2.6deg, using prototype electronics. The median absolute deviations from redundancy decrease with longer baselines. We show that closure phase spectra can be used to identify ill-behaved antennas in the array, independent of calibration. We investigate the temporal behavior of closure spectra. The Allan variance increases after a one minute stride time, due to passage of the sky through the primary beam of the transit telescope. However, the closure spectra repeat to well within the noise per measurement at corresponding local sidereal times (LST) from day to day. In future papers in this series we will develop the technique of using closure phase spectra in the search for the HI 21cm signal from cosmic reionization

    The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang

    Get PDF
    Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a change in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.Comment: Submitted to Nature, under review after referee report. 22 pages, 4 figures, 4 Extended Data Figures, 5 Extended Data table

    Nonthermal Emission from Star-Forming Galaxies

    Full text link
    The detections of high-energy gamma-ray emission from the nearby starburst galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of star-driven nonthermal processes and phenomena in non-AGN star-forming galaxies. We review basic aspects of the related processes and their modeling in starburst galaxies. Since these processes involve both energetic electrons and protons accelerated by SN shocks, their respective radiative yields can be used to explore the SN-particle-radiation connection. Specifically, the relation between SN activity, energetic particles, and their radiative yields, is assessed through respective measures of the particle energy density in several star-forming galaxies. The deduced energy densities range from O(0.1) eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space Science Proceeding
    corecore