1,105 research outputs found

    Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Get PDF
    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered

    NASA's Radioisotope Power Systems - Plans

    Get PDF
    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements

    Planetary Science Technology Infusion Study: Findings and Recommendations Status

    Get PDF
    The Planetary Science Division (PSD) within the National Aeronautics and Space Administrations (NASA) Science Mission Directorate (SMD) at NASA Headquarters sought to understand how to better realize a scientific return on spacecraft system technology investments currently being funded. In order to achieve this objective, a team at NASA Glenn Research Center was tasked with surveying the science and mission communities to collect their insight on technology infusion and additionally sought inputs from industry, universities, and other organizations involved with proposing for future PSD missions. This survey was undertaken by issuing a Request for Information (RFI) activity that requested input from the proposing community on present technology infusion efforts. The Technology Infusion Study was initiated in March 2013 with the release of the RFI request. The evaluation team compiled and assessed this input in order to provide PSD with recommendations on how to effectively infuse new spacecraft systems technologies that it develops into future competed missions enabling increased scientific discoveries, lower mission cost, or both. This team is comprised of personnel from the Radioisotope Power Systems (RPS) Program and the In-Space Propulsion Technology (ISPT) Program staff.The RFI survey covered two aspects of technology infusion: 1) General Insight, including: their assessment of barriers to technology infusion as related to infusion approach; technology readiness; information and documentation products; communication; integration considerations; interaction with technology development areas; cost-capped mission areas; risk considerations; system level impacts and implementation; and mission pull. 2) Specific technologies from the most recent PSD Announcements of Opportunities (AOs): The Advanced Stirling Radioisotope Generator (ASRG), aerocapture and aeroshell hardware technologies, the NASA Evolutionary Xenon Thruster (NEXT) ion propulsion system, and the Advanced Materials Bi-propellant Rocket (AMBR) engine.This report will present the teams Findings from the RFI inputs and the recommendations that arose from these findings. Methodologies on the findings and recommendations development are discussed

    A Cure for HIV Infection: "Not in My Lifetime" or "Just Around the Corner"?

    Get PDF
    With the advent and stunning success of combination antiretroviral therapy (ART) to prolong and improve quality of life for persons with HIV infection, HIV research has been afforded the opportunity to pivot towards studies aimed at finding "a cure." The mere idea that cure of HIV might be possible has energized researchers and the community towards achieving this goal. Funding agencies, both governmental and private, have targeted HIV cure as a high priority; many in the field have responded to these initiatives and the cure research agenda is robust. In this "salon" two editors of Pathogens and Immunity, Michael Lederman and Daniel Douek ask whether curing HIV is a realistic, scalable objective. We start with an overview perspective and have asked a number of prominent HIV researchers to add to the discussion

    Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus.

    Get PDF
    HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans

    Radioisotope Power Systems Program Status and Expectations

    Get PDF
    The Radioisotope Power Systems (RPS) Programs goal is to make RPS available for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to use to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The RPS Program exists to support NASA's Science Mission Directorate (SMD). The RPS Program provides strategic leadership for RPS, enables the availability of RPS for use by the planetary science community, successfully executes RPS flight projects and mission deployments, maintains a robust technology development portfolio, manages RPS related National Environmental Policy Act (NEPA) and Nuclear Launch Safety (NLS) approval processes for SMD, maintains insight into the Department of Energy (DOE) implementation of NASA funded RPS production infrastructure operations, including implementation of the NASA funded Plutonium-238 production restart efforts. This paper will provide a status of recent RPS activities

    Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity.

    Get PDF
    The majority of chimeric antigen receptor (CAR) T-cell research has focused on attacking cancer cells. Here, we show that targeting the tumor-promoting, nontransformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single-chain Fv FAP [monoclonal antibody (mAb) 73.3] with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFN-γ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAP(hi) stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8(+) T-cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T-cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective, suggesting that further clinical development of anti-human FAP-CAR is warranted

    Implementation of Cross-Agency Nuclear Applications

    Get PDF
    The Radioisotope Power System (RPS) Program was established in 2009 to manage RPS investments for NASA to ensure the availability of RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible. The RPS Program is a multi-center and multi-agency program. NASA is in partnership with the Department of Energy (DOE) Office of Nuclear Energy to provide technologically robust nuclear power system solutions to robotic spacecraft and exploration missions. During the last decade, the RPS Program and DOE have supported missions, developed technologies and initiated new power system developments. These technical areas, as all technical areas, have challenges and standard engineering solutions; however, clearing the path to enable the technical work requires agreements to be established. This paper describes a process by which two governmental agencies have established a successful basis to accomplish the needed work

    Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products

    Get PDF
    Exposure to replication-competent lentivirus (RCL) is a theoretical safety concern for individuals treated with lentiviral gene therapy. For certain ex vivo gene therapy applications, including cancer immunotherapy trials, RCL detection assays are used to screen the vector product as well as the vector-transduced cells. In this study, we reviewed T cell products screened for RCL using methodology developed in the National Gene Vector Biorepository. All trials utilized third-generation lentiviral vectors produced by transient transfection. Samples from 26 clinical trials totaling 460 transduced cell products from 375 subjects were evaluated. All cell products were negative for RCL. A total of 296 of the clinical trial participants were screened for RCL at least 1 month after infusion of the cell product. No research subject has shown evidence of RCL infection. These findings provide further evidence attesting to the safety of third-generation lentiviral vectors and that testing T cell products for RCL does not provide added value to screening the lentiviral vector product

    Kinetic Phenomena in Thin Film Electronic Materials

    Get PDF
    Contains reports on ten research projects.Semiconductor Research Corporation (Grant 83-01-033)National Science Foundation (Grant DMR 81-19285)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)National Science Foundation (Grant ECS82-05701)International Business Machines, Inc.Dartmouth UniversityJoint Services Electronics Program (Contract DAAG29-83-K-0003
    corecore