77 research outputs found

    Molecular cloud structure in the star-forming region W43

    Get PDF
    In the struggle toward an understanding of the process of star formation it is one of the most important tasks to study the initial properties of the cold and dense interstellar medium. Stars are known to form in dense molecular clouds, but it is not yet fully understood how they from from the neutral gas that permeates the Galaxy. Therefore, it is crucial to fully understand the creation process of molecular clouds. Colliding flows are a possible explanation for this process. This class of models considers streams of warm, diffuse, and atomic hydrogen gas that stream into each other. Fluctuations of the gas at the collision area create regions of higher density and lower temperature, where molecules can form. W43 is one of the largest molecular cloud complexes in the Milky Way with a total gas mass of several million Solar masses. Prior investigations have identified it as one of the largest and most luminous star-forming regions in the Galaxy. This is most probably due to its exceptional position, which is assumed to be at the junction point of the Galactic spiral arms and the bar. At this location, gas is piled up, because the elliptical orbits in the bar and the circular orbits in the spiral arms interfere. Therefore, W43 poses an excellent laboratory to study the formation of molecular clouds. This thesis aims at characterizing the W43 star-forming region. The distribution of molecular clouds, their velocity structure, and physical properties are analyzed and the origin of a single filament is studied in detail. The first part of this work describes the project W43 HERO (W43 Hera/EmiR Observations) that has been initiated to observe the large scale distribution of 13CO (2-1) and C18O (2-1) in the W43 complex with the IRAM 30m telescope. These molecular emission lines provide information of the medium dense molecular gas (~10^3 cm^-3) in the complex. While 13CO (2-1) traces the more diffuse, widespread gas in the clouds, C18O (2-1) is used to depict the denser central clumps of the clouds. We analyze the velocity structure of our data and align our findings with velocity models of the spiral arms in the Galaxy. We thus confirm the position of W43 near the tangential point in the Scutum arm, which is situated near the tip of the elongated bar. This point has a distance of 6 kpc from the Sun. We then derive the optical depth, the excitation temperature, and the H2 column density of the gas from our observations. The total mass of medium dense molecular clouds in the W43 complex is found to be 1.9x10^6 Solar masses. An estimation of the shear parameter of the cloud complex provides the insight that it is massive enough to withstand the shear forces generated by the motions of gas streams in the Galaxy. Mass estimations are in agreement with those taken from Herschel dust emission maps. Plots of the probability distribution functions of the H2 column density, derived from Herschel and the IRAM 30m data, are created. Both show a log-normal distribution on lower masses and power-law deviation on the high-mass end of the function. This is commonly associated with the influence of star formation. The slope of the CO power-law tail is less steep than that derived from dust emission. We could have found an efficient tool, that only traces the gas that collapses into a protostar. In the second part of this thesis we pick one single filament in the W43 complex and analyze it in detail. Additional observations have been carried out to complement the IRAM 30m dataset. In particular, there are observations of CO (6-5) from the APEX telescope, [C II] from the Herschel satellite, [C I], observed with NANTEN2, and the CARMA observations of HCN (1-0), HCO+ (1-0), and N2H+ (1-0). We use the radiative transfer code RADEX to estimate the temperature and density of the molecular gas. The best solution is a kinetic temperature around 30 K and a density of ~10^4 cm^-3. We then study the origin of the ionized carbon which we have observed with Herschel. This species is often discussed in the framework of static photon-dominated regions (PDRs). The physical conditions are studied with the program KOSMA-tau, which yields a very high UV-field, necessary for the creation of the observed data. A comparison with typical UV-tracers results in the insight that this radiation strength is unrealistically high. Thus, the creation of C+ by a PDR is implausible and a different mechanism has to be the origin. We find it more likely that the [C II] emission traces the transition zone between the initial atomic gas and the molecular cloud which forms from it. We would thus witness the dynamic formation of a young molecular filament. We conclude that W43 is indeed one of the most massive and important molecular cloud complexes in the Galaxy and that colliding flows are a possible explanation for its formation

    Squeezed between shells? On the origin of the Lupus I molecular cloud. - II. APEX CO and GASS HI observations

    Get PDF
    Accepted for publication in a future issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.Context. The Lupus I cloud is found between the Upper-Scorpius (USco) and the Upper-Centaurus-Lupus (UCL) sub-groups of the Scorpius-Centaurus OB-association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims. We investigate if the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. Methods. We performed APEX 13CO(2–1) and C 18O(2–1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H i survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. Results. We present evidence that the molecular gas of Lupus I is tightly linked to the atomic material of the USco shell. The CO emission in Lupus I is found mainly at velocities between vLSR = 3–6 km s−1 which is in the same range as the H i velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H i shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The non-thermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario where Lupus I is located in the interaction zone between the USco shell and the UCL wind bubble. Conclusions. The kinematics observations are consistent with a scenario where the Lupus I cloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counter-pressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation.Peer reviewedFinal Accepted Versio

    Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    Get PDF
    International audienceWe aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2–1) and C18O (2–1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12′′. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104   M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106   M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas

    Genomic portrait and relatedness patterns of the Iron Age Log Coffin culture in northwestern Thailand

    Get PDF
    The Iron Age of highland Pang Mapha, northwestern Thailand, is characterised by a mortuary practice known as Log Coffin culture. Dating between 2300 and 1000 years ago, large coffins carved from individual teak trees have been discovered in over 40 caves and rock shelters. While previous studies focussed on the cultural development of the Log Coffin-associated sites, the origins of the practice, connections with other wooden coffin-using groups in Southeast Asia, and social structure within the region remain understudied. Here, we present genome-wide data from 33 individuals from five Log Coffin culture sites to study genetic ancestry profiles and genetic interconnectedness. The Log Coffin-associated genomes can be modelled as an admixture between Hòabìnhian hunter-gatherer-, Yangtze River farmer-, and Yellow River farmer-related ancestry. This indicates different influence spheres from Bronze and Iron Age individuals from northeastern Thailand as reflected by cultural practices. Our analyses also identify close genetic relationships within the sites and more distant connections between sites in the same and different river valleys. In combination with high mitochondrial haplogroup diversity and genome-wide homogeneity, the Log Coffin-associated groups from northwestern Thailand seem to have been a large, well-connected community, where genetic relatedness played a significant role in the mortuary ritual

    THOR - The HI, OH, Recombination Line Survey of the Milky Way - The pilot study: HI observations of the giant molecular cloud W43

    Get PDF
    To study the atomic, molecular and ionized emission of Giant Molecular Clouds (GMCs), we have initiated a Large Program with the VLA: 'THOR - The HI, OH, Recombination Line survey of the Milky Way'. We map the 21cm HI line, 4 OH lines, 19 H_alpha recombination lines and the continuum from 1 to 2 GHz of a significant fraction of the Milky Way (l=15-67deg, |b|<1deg) at ~20" resolution. In this paper, we focus on the HI emission from the W43 star-formation complex. Classically, the HI 21cm line is treated as optically thin with column densities calculated under this assumption. This might give reasonable results for regions of low-mass star-formation, however, it is not sufficient to describe GMCs. We analyzed strong continuum sources to measure the optical depth, and thus correct the HI 21cm emission for optical depth effects and weak diffuse continuum emission. Hence, we are able to measure the HI mass of W43 more accurately and our analysis reveals a lower limit of M=6.6x10^6 M_sun, which is a factor of 2.4 larger than the mass estimated with the assumption of optically thin emission. The HI column densities are as high as N(HI)~150 M_sun/pc^2 ~ 1.9x10^22 cm^-2, which is an order of magnitude higher than for low mass star formation regions. This result challenges theoretical models that predict a threshold for the HI column density of ~10 M_sun/pc^2, at which the formation of molecular hydrogen should set in. By assuming an elliptical layered structure for W43, we estimate the particle density profiles. While at the cloud edge atomic and molecular hydrogen are well mixed, the center of the cloud is strongly dominated by molecular hydrogen. We do not identify a sharp transition between hydrogen in atomic and molecular form. Our results are an important characterization of the atomic to molecular hydrogen transition in an extreme environment and challenges current theoretical models

    Evidence for dynastic succession among early Celtic elites in Central Europe

    Get PDF
    The early Iron Age (800 to 450 BCE) in France, Germany and Switzerland, known as the ‘West-Hallstattkreis’, stands out as featuring the earliest evidence for supra-regional organization north of the Alps. Often referred to as ‘early Celtic’, suggesting tentative connections to later cultural phenomena, its societal and population structure remain enigmatic. Here we present genomic and isotope data from 31 individuals from this context in southern Germany, dating between 616 and 200 BCE. We identify multiple biologically related groups spanning three elite burials as far as 100 km apart, supported by trans-regional individual mobility inferred from isotope data. These include a close biological relationship between two of the richest burial mounds of the Hallstatt culture. Bayesian modelling points to an avuncular relationship between the two individuals, which may suggest a practice of matrilineal dynastic succession in early Celtic elites. We show that their ancestry is shared on a broad geographic scale from Iberia throughout Central-Eastern Europe, undergoing a decline after the late Iron Age (450 BCE to ~50 CE)

    Ancient Plasmodium genomes shed light on the history of human malaria

    Get PDF
    Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago

    Female bone physiology resilience in a past Polynesian Outlier community

    Get PDF
    Remodelling is a fundamental biological process involved in the maintenance of bone physiology and function. We know that a range of health and lifestyle factors can impact this process in living and past societies, but there is a notable gap in bone remodelling data for populations from the Pacific Islands. We conducted the first examination of femoral cortical histology in 69 individuals from ca. 440–150 BP Taumako in Solomon Islands, a remote ‘Polynesian Outlier’ island in Melanesia. We tested whether bone remodelling indicators differed between age groups, and biological sex validated using ancient DNA. Bone vascular canal and osteon size, vascular porosity, and localised osteon densities, corrected by femoral robusticity indices were examined. Females had statistically significantly higher vascular porosities when compared to males, but osteon densities and ratios of canal-osteon (~ 8%) did not differ between the sexes. Our results indicate that, compared to males, localised femoral bone tissue of the Taumako females did not drastically decline with age, contrary to what is often observed in modern populations. However, our results match findings in other archaeological samples—a testament to past female bone physiology resilience, also now observed in the Pacific region.Introduction - Bone remodelling through human life‑course. - Bone remodelling in archaeological humans. Results - Femoral vascular porosity and bone remodelling indicators at Taumako. Discussion - Sex and cortical bone histology at Taumako. - The effect of age on bone histology at Taumako. Remarks on temporal and spatial bone histology data Limitations Conclusions Materials and method

    Female bone physiology resilience in 750-300 BP ‘Polynesian Outlier’ community

    Get PDF
    Remodelling is a fundamental biological process involved in the maintenance of bone physiology and function. We know that a range of health and lifestyle factors can impact this process in living and past societies, but there is a notable gap in bone remodelling data for populations from the Pacific Islands. We conducted the first examination of femoral cortical histology in n = 69 individuals from 750 – 300 BP Taumako in Solomon Islands, a remote ‘Polynesian Outlier’ island in Melanesia. We tested whether bone remodelling indicators differed between age-at-death groups, and biological sex validated using ancient DNA. Bone vascular canal and osteon size, vascular porosity, and localised osteon densities, corrected by femoral robusticity indices were examined. Females had statistically significantly higher vascular porosities when compared to males, but osteon densities and ratios of canal-to-osteon (~10%) did not differ between the sexes. Compared to males, the femora of Taumako females experienced higher frequencies of remodelling events, which mirrors bone health paradigms through the life-course today. However, contrary to modern populations, female femoral bone tissue did not decline with age. This matches findings in other archaeological samples, and is testament to ancient female bone physiology resilience also in the Pacific region.Introduction - The importance of bone remodelling through human life-course - Bone remodelling in archaeological humans Results - Trends in bone remodelling at Taumako Discussion - Sex-specific trends in cortical bone remodelling - Bone remodelling with age at Taumako Limitations and remarks on temporal and spatial data Conslusions Materials and Method

    Female bone physiology resilience in a past Polynesian Outlier community

    Get PDF
    Remodelling is a fundamental biological process involved in the maintenance of bone physiology and function. We know that a range of health and lifestyle factors can impact this process in living and past societies, but there is a notable gap in bone remodelling data for populations from the Pacific Islands. We conducted the first examination of femoral cortical histology in 69 individuals from ca. 440–150 BP Taumako in Solomon Islands, a remote ‘Polynesian Outlier’ island in Melanesia. We tested whether bone remodelling indicators differed between age groups, and biological sex validated using ancient DNA. Bone vascular canal and osteon size, vascular porosity, and localised osteon densities, corrected by femoral robusticity indices were examined. Females had statistically significantly higher vascular porosities when compared to males, but osteon densities and ratios of canal-osteon (~ 8%) did not differ between the sexes. Our results indicate that, compared to males, localised femoral bone tissue of the Taumako females did not drastically decline with age, contrary to what is often observed in modern populations. However, our results match findings in other archaeological samples—a testament to past female bone physiology resilience, also now observed in the Pacific region.Introduction - Bone remodelling through human life‑course. - Bone remodelling in archaeological humans. Results - Femoral vascular porosity and bone remodelling indicators at Taumako. Discussion - Sex and cortical bone histology at Taumako. - The effect of age on bone histology at Taumako. Remarks on temporal and spatial bone histology data Limitations Conclusions Materials and method
    corecore