1,341 research outputs found
Entropy bounds in terms of the w parameter
In a pair of recent articles [PRL 105 (2010) 041302 - arXiv:1005.1132; JHEP
1103 (2011) 056 - arXiv:1012.2867] two of the current authors have developed an
entropy bound for equilibrium uncollapsed matter using only classical general
relativity, basic thermodynamics, and the Unruh effect. An odd feature of that
bound, S <= A/2, was that the proportionality constant, 1/2, was weaker than
that expected from black hole thermodynamics, 1/4. In the current article we
strengthen the previous results by obtaining a bound involving the (suitably
averaged) w parameter. Simple causality arguments restrict this averaged
parameter to be <= 1. When equality holds, the entropy bound saturates at the
value expected based on black hole thermodynamics. We also add some clarifying
comments regarding the (net) positivity of the chemical potential. Overall, we
find that even in the absence of any black hole region, we can nevertheless get
arbitrarily close to the Bekenstein entropy.Comment: V1: 14 pages. V2: One reference added. V3: This version accepted for
publication in JHE
Bloodstream infections in late-stage acquired immunodeficiency syndrome patients evaluated by a lysis centrifugation system
Opportunistic infections, which affect acquired immunodeficiency syndrome (Aids) patients, are frequently disseminated and may cause bloodstream infections (BSI). The aim of this study was to evaluate the main causes of BSI in Aids patients with advanced stage of the disease, with special emphasis on the identification of fungemia. During a 21 months period, all patients with Aids (CD4 < 200) and febrile syndrome admitted to 3 university hospitals were systematically evaluated. For each patient presenting fever, a pair of blood cultures was collected and processed by using a commercial lysis-centrifugation system. One hundred and eleven patients (75 males) with a mean age of 36 years (median 33 years) and mean CD4 count of 64 cells/ml were included. Among the 111 patients evaluated we documented 54 episodes of BSI, including 46 patients with truly systemic infections and 8 episodes considered as contaminants. BSI were caused by gram-positive bacteria (43%), fungi (20%), gram-negative bacteria (15%), mycobacteria (15%), and mixed flora (7%). The crude mortality rate of our patients was 39%, being 50% for patients with BSI and 31% for the others. In conclusion, BSI are a common related to systemic infections on Aids patients with advanced stage of disease and is associated with a high rate of mortality.Universidade Federal de São Paulo (UNIFESP) Hospital São PauloHospital e Maternidade Santa MarcelinaHospital HeliópolisUNIFESP, Hospital São PauloSciEL
Shot noise in mesoscopic systems
This is a review of shot noise, the time-dependent fluctuations in the
electrical current due to the discreteness of the electron charge, in small
conductors. The shot-noise power can be smaller than that of a Poisson process
as a result of correlations in the electron transmission imposed by the Pauli
principle. This suppression takes on simple universal values in a symmetric
double-barrier junction (suppression factor 1/2), a disordered metal (factor
1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect
on this shot-noise suppression, while thermalization of the electrons due to
electron-electron scattering increases the shot noise slightly. Sub-Poissonian
shot noise has been observed experimentally. So far unobserved phenomena
involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev
reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic
Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn,
NATO ASI Series E (Kluwer Academic Publishing, Dordrecht
The a-theorem and conformal symmetry breaking in holographic RG flows
We study holographic models describing an RG flow between two fixed points
driven by a relevant scalar operator. We show how to introduce a spurion field
to restore Weyl invariance and compute the anomalous contribution to the
generating functional in even dimensional theories. We find that the
coefficient of the anomalous term is proportional to the difference of the
conformal anomalies of the UV and IR fixed points, as expected from anomaly
matching arguments in field theory. For any even dimensions the coefficient is
positive as implied by the holographic a-theorem. For flows corresponding to
spontaneous breaking of conformal invariance, we also compute the two-point
functions of the energy-momentum tensor and the scalar operator and identify
the dilaton mode. Surprisingly we find that in the simplest models with just
one scalar field there is no dilaton pole in the two-point function of the
scalar operator but a stronger singularity. We discuss the possible
implications.Comment: 50 pages. v2: minor changes, added references, extended discussion.
v3: we have clarified some of the calculations and assumptions, results
unchanged. v4: published version in JHE
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice
Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes
BMN vacua, superstars and non-abelian T-duality
Acting with non-Abelian T-duality on the inside the subspace of
with units of flux, we generate a new half-BPS solution
with symmetry that belongs to the Lin-Lunin-Maldacena class of
geometries. The analysis of the asymptotics, quantised charges and probe branes
in this geometry suggests an interpretation as the gravity dual to the
Berenstein-Maldacena-Nastase Plane Wave Matrix Model, in a particular vacuum
associated to a partition of , in which the multiplicity of each
irreducible representation is equal to its dimension. This vacuum is
interpreted in M-theory in terms of giant gravitons backreacting in the
maximally supersymmetric pp-wave geometry. Consistently with this, we show that
the non-Abelian T-dual solution exactly agrees with the Penrose limit of the
superstar solution in . This suggests an interesting global
completion of the non-Abelian T-dual solution in terms of an M5-brane geometry.Comment: 28 pages, discussion in section 5.1 improved, results unchanged,
reference added. Matches published versio
Recommended from our members
Syndromic approach to arboviral diagnostics for global travelers as a basis for infectious disease surveillance
Background
Arboviruses have overlapping geographical distributions and can cause symptoms that coincide with more common infections. Therefore, arbovirus infections are often neglected by travel diagnostics. Here, we assessed the potential of syndrome-based approaches for diagnosis and surveillance of neglected arboviral diseases in returning travelers.
Method
To map the patients high at risk of missed clinical arboviral infections we compared the quantity of all arboviral diagnostic requests by physicians in the Netherlands, from 2009 through 2013, with a literature-based assessment of the travelers’ likely exposure to an arbovirus.
Results
2153 patients, with travel and clinical history were evaluated. The diagnostic assay for dengue virus (DENV) was the most commonly requested (86%). Of travelers returning from Southeast Asia with symptoms compatible with chikungunya virus (CHIKV), only 55% were tested. For travelers in Europe, arbovirus diagnostics were rarely requested. Over all, diagnostics for most arboviruses were requested only on severe clinical presentation.
Conclusion
Travel destination and syndrome were used inconsistently for triage of diagnostics, likely resulting in vast under-diagnosis of arboviral infections of public health significance. This study shows the need for more awareness among physicians and standardization of syndromic diagnostic algorithm
Influence of running-in operating conditions on the steady-state torque loss of ground spur gears
The influence of gear running-in operating conditions on the steady-state efficiency of ground spur gears is not well established. However, it is accepted that less rough surfaces promote better efficiency. Five ground spur gears with similar surface finishing were submitted to two distinct test stages: (i) running-in stage and (ii) torque loss stage. During the running-in stage, five different running-in operating conditions were conducted to ascertain the influence of the load and temperature on the subsequent steady-state gear torque loss test. The mass loss and surface roughness parameters were influenced by the running-in operating conditions. However, different surface conditions after running-in had only a transient effect on the torque loss measured subsequently. So, the test campaign allow to conclude that even after a severe running-in operating condition, the gears surface still evolves in a significant way during the torque loss tests
Frequency-dependent selection predicts patterns of radiations and biodiversity
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking niche-filling processes, whereas constant rates have been attributed to non-adaptive processes such as sexual selection, mutation, and dispersal. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the speciation rate is driven by frequency dependent selection. We used a frequency-dependent and DNA sequence-based model of populations and genetic-distance-based speciation, in the absence of adaptation to ecological niches. We tested the frequency-dependent selection mechanism using cichlid fish and Darwin's finches, two classic model systems for which speciation rates and richness data exist. Using negative frequency dependent selection, our model both predicts the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, the speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity are driven by larger incipient species abundance (and consequent lower extinction rates) with frequency-dependent selection. These results demonstrate that mutations, genetic-distance-based speciation, sexual and frequency-dependent selection are sufficient not only for promoting rapid proliferation of new species, but also for maintaining the high diversity observed in natural systems
- …
