2,383 research outputs found
Aerothermodynamic Analysis of a Reentry Brazilian Satellite
This work deals with a computational investigation on the small ballistic
reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada
Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of
attack in a chemical equilibrium and thermal non-equilibrium are modeled by the
Direct Simulation Monte Carlo (DSMC) method, which has become the main
technique for studying complex multidimensional rarefied flows, and that
properly accounts for the non-equilibrium aspects of the flows. The emphasis of
this paper is to examine the behavior of the primary properties during the high
altitude portion of SARA reentry. In this way, velocity, density, pressure and
temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km.
In addition, comparisons based on geometry are made between axisymmetric and
planar two-dimensional configurations. Some significant differences between
these configurations were noted on the flowfield structure in the reentry
trajectory. The analysis showed that the flow disturbances have different
influence on velocity, density, pressure and temperature along the stagnation
streamline ahead of the capsule nose. It was found that the stagnation region
is a thermally stressed zone. It was also found that the stagnation region is a
zone of strong compression, high wall pressure. Wall pressure distributions are
compared with those of available experimental data and good agreement is found
along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of
Physic
Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.
During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy
The satellite-borne experiment PAMELA has been used to make a new measurement
of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which
extends previously published measurements down to 60 MeV and up to 180 GeV in
kinetic energy. During 850 days of data acquisition approximately 1500
antiprotons were observed. The measurements are consistent with purely
secondary production of antiprotons in the galaxy. More precise secondary
production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical
Review Letter
Neural Network Parameterizations of Electromagnetic Nucleon Form Factors
The electromagnetic nucleon form-factors data are studied with artificial
feed forward neural networks. As a result the unbiased model-independent
form-factor parametrizations are evaluated together with uncertainties. The
Bayesian approach for the neural networks is adapted for chi2 error-like
function and applied to the data analysis. The sequence of the feed forward
neural networks with one hidden layer of units is considered. The given neural
network represents a particular form-factor parametrization. The so-called
evidence (the measure of how much the data favor given statistical model) is
computed with the Bayesian framework and it is used to determine the best form
factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the
prior assumptions is added. The manuscript contains 4 new figures and 2 new
tables (32 pages, 15 figures, 2 tables
Offspring of Mothers With Histories of Chronic and Non-chronic Depression: Symptom Trajectories From Ages 6 to 15
© Copyright © 2020 Silver, Olino, Carlson and Klein. Several studies have reported that individuals with chronic depression have higher rates of depressive disorders, and particularly chronic depression, in their first-degree relatives, compared to those with non-chronic (episodic) major depression. In addition, a few studies have suggested that offspring of parents with chronic depression have elevated rates of depression and other psychopathology. Most of this work uses the Diagnostic and Statistical Manual of Mental Disorders (DSM), which defines chronicity as persistence for at least 2 years. An alternative is a life-course, approach, which evaluates overall course since first onset. We examined the trajectories of depressive, anxiety, and externalizing symptoms in a community sample of 577 offspring of mothers with histories of chronic depression, non-chronic (or episodic) major depression, and no depression using prospective, multi-informant assessments from age 6 to age 15. Offspring of mothers with a history of depression exhibited higher levels of depression, anxiety, and externalizing symptoms than offspring of mothers who were never depressed. Moreover, the effects of maternal depression on offspring depression, anxiety, and externalizing symptoms were more pronounced for mothers with histories of chronic than non-chronic depression, particularly when the life-course approach to classifying chronicity was used. These data suggest that research that combines chronic and non-chronic depressions includes significant heterogeneity that may hinder understanding of etiology and reduce the likelihood of developing a cumulative and replicable literature. In addition, these findings have significant implications for prevention and treatment
Reaction rates and transport in neutron stars
Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the
underlying reaction rates of dense hadronic and quark matter in the crust and
the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of
Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes,
references updated, overview graphic added in the introduction, improvements
in Sec IV.A.
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
