1,446 research outputs found
Carbon monoxide in the solar atmosphere I. Numerical method and two-dimensional models
The radiation hydrodynamic code CO5BOLD has been supplemented with the
time-dependent treatment of chemical reaction networks. Advection of particle
densities due to the hydrodynamic flow field is also included. The radiative
transfer is treated frequency-independently, i.e. grey, so far. The upgraded
code has been applied to two-dimensional simulations of carbon monoxide (CO) in
the non-magnetic solar photosphere and low chromosphere. For this purpose a
reaction network has been constructed, taking into account the reactions which
are most important for the formation and dissociation of CO under the physical
conditions of the solar atmosphere. The network has been strongly reduced to 27
reactions, involving the chemical species H, H2, C, O, CO, CH, OH, and a
representative metal. The resulting CO number density is highest in the cool
regions of the reversed granulation pattern at mid-photospheric heights and
decreases strongly above. There, the CO abundance stays close to a value of 8.3
on the usual logarithmic abundance scale with [H]=12 but is reduced in hot
shock waves which are a ubiquitous phenomenon of the model atmosphere. For
comparison, the corresponding equilibrium densities have been calculated, based
on the reaction network but also under assumption of instantaneous chemical
equilibrium by applying the Rybicki & Hummer (RH) code by Uitenbroek (2001).
Owing to the short chemical timescales, the assumption holds for a large
fraction of the atmosphere, in particular the photosphere. In contrast, the CO
number density deviates strongly from the corresponding equilibrium value in
the vicinity of chromospheric shock waves. Simulations with altered reaction
network clearly show that the formation channel via hydroxide (OH) is the most
important one under the conditions of the solar atmosphere.Comment: 15 pages, 6 figures, final version will contain online materia
Screening masses in quenched (2+1)d Yang-Mills theory: universality from dynamics?
We compute the spectrum of gluonic screening-masses in the channel
of quenched 3d Yang-Mills theory near the phase-transition. Our
finite-temperature lattice simulations are performed at scaling region, using
state-of-art techniques for thermalization and spectroscopy, which allows for
thorough data extrapolations to thermodynamic limit. Ratios among
mass-excitations with the same quantum numbers on the gauge theory, 2d Ising
and models are compared, resulting in a nice agreement with
predictions from universality. In addition, a gauge-to-scalar mapping,
previously employed to fit QCD Green's functions at deep IR, is verified to
dynamically describe these universal spectroscopic patternsComment: 15 pages, 4 eps figures. Revised version, to appear in Nucl. Phys.
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
Anomalous dependence of the c-axis polarized Fe B phonon mode with Fe and Se concentrations in FeTeSe
We report an investigation of the lattice dynamical properties in a range of FeTeSe compounds, with special emphasis on the c-axis polarized vibration of Fe with B symmetry, a Raman active mode common to all families of Fe-based superconductors. We have carried out a systematic study of the temperature dependence of this phonon mode as a function of Se and excess Fe concentrations. In parent compound FeTe, we observe an unconventional broadening of the phonon between room temperature and magnetic ordering temperature . The situation smoothly evolves towards a regular anharmonic behavior as Te is substituted for Se and long range magnetic order is replaced by superconductivity. Irrespective to Se contents, excess Fe is shown to provide an additional damping channel for the B phonon at low temperatures. We performed Density Functional Theory (DFT) ab-initio calculations within the local density approximation (LDA) to calcuate the phonon frequencies including magnetic polarization and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). We obtained a good agreement with the measured phonon frequencies in the Fe-deficient samples, while the effects of Fe excess are poorly reproduced. This may be due to excess Fe-induced local magnetism and low energy magnetic fluctuations that can not be treated accurately within these approaches. As recently revealed by neutron scattering and -SR studies, these phenomena occur in the temperature range where anomalous decay of the B phonon is observed, and suggests a peculiar coupling of this mode with local moments and spin fluctuations in FeTeSe
Variation in resistance to multiple pathogen species:anther-smuts of Silene uniflora
The occurrence of multiple pathogen species on a shared host species is unexpected when they exploit the same micro-niche within the host individual. One explanation for such observations is the presence of pathogen-specific resistances segregating within the host population into sites that are differentially occupied by the competing pathogens. This study used experimental inoculations to test whether specific resistances may contribute to the maintenance of two species of anther-smut fungi, Microbotryum silenes-inflatae and Microbotryum lagerheimii, in natural populations of Silene uniflora in England and Wales. Overall, resistance to the two pathogens was strongly positively correlated among host populations and to a lesser degree among host families within populations. A few instances of specific resistance were also observed and confirmed by replicated inoculations. The results suggest that selection for resistance to one pathogen may protect the host from the emergence via host shifts of related pathogen species, and conversely that co-occurrence of two species of pathogens may be dependent on the presence of host genotypes susceptible to both
StyleID: Identity Disentanglement for Anonymizing Faces
Privacy of machine learning models is one of the remaining challenges that
hinder the broad adoption of Artificial Intelligent (AI). This paper considers
this problem in the context of image datasets containing faces. Anonymization
of such datasets is becoming increasingly important due to their central role
in the training of autonomous cars, for example, and the vast amount of data
generated by surveillance systems. While most prior work de-identifies facial
images by modifying identity features in pixel space, we instead project the
image onto the latent space of a Generative Adversarial Network (GAN) model,
find the features that provide the biggest identity disentanglement, and then
manipulate these features in latent space, pixel space, or both. The main
contribution of the paper is the design of a feature-preserving anonymization
framework, StyleID, which protects the individuals' identity, while preserving
as many characteristics of the original faces in the image dataset as possible.
As part of the contribution, we present a novel disentanglement metric, three
complementing disentanglement methods, and new insights into identity
disentanglement. StyleID provides tunable privacy, has low computational
complexity, and is shown to outperform current state-of-the-art solutions.Comment: Accepted to Privacy Enhancing Technologies Symposium (PETS), July
2023. Will appear in Proceedings on Privacy Enhancing Technologies (PoPETs),
volume 1, 2023. 15 pages including references and appendix, 16 figures, 5
table
Nucleus pulposus phenotypic markers to determine stem cell differentiation : fact or fiction?
Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples.
qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis.
Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells.
A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible
Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)
The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae
Employing a novel bioelastomer to toughen polylactide
Biodegradable, biocompatible polylactide (PLA) synthesized from renewable resources has attracted extensive interests over the past decades and holds great potential to replace many petroleum-derived plastics. With no loss of biodegradability and biocompatibility, we highly toughened PLA using a novel bioelastomer (BE)–synthesized from biomass diols and diacids. Although PLA and BE are immiscible, BE particles of ∼1 μm in diameter are uniformly dispersed in the matrix, and this indicates some compatibility between PLA and BE. BE significantly increased the cold crystallization ability of PLA, which was valuable for practical processing and performance. SEM micrographs of fracture surface showed a brittle-to-ductile transition owing to addition of BE. At 11.5 vol%, notched Izod impact strength improved from 2.4 to 10.3 kJ/m2, 330% increment; the increase is superior to previous toughening effect by using petroleum-based tougheners
Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study
The formation of coherently strained three-dimensional islands on top of the
wetting layer in Stranski-Krastanov mode of growth is considered in a model in
1+1 dimensions accounting for the anharmonicity and non-convexity of the real
interatomic forces. It is shown that coherent 3D islands can be expected to
form in compressed rather than in expanded overlayers beyond a critical lattice
misfit. In the latter case the classical Stranski-Krastanov growth is expected
to occur because the misfit dislocations can become energetically favored at
smaller island sizes. The thermodynamic reason for coherent 3D islanding is the
incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer
height islands with a critical size appear as necessary precursors of the 3D
islands. The latter explains the experimentally observed narrow size
distribution of the 3D islands. The 2D-3D transformation takes place by
consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc.,
after exceeding the corresponding critical sizes. The rearrangements are
initiated by nucleation events each next one requiring to overcome a lower
energetic barrier. The model is in good qualitative agreement with available
experimental observations.Comment: 12 pages text, 15 figures, Accepted in Phys.Rev.B, Vol.61, No2
- …
