1,319 research outputs found
Covalently Binding the Photosystem I to Carbon Nanotubes
We present a chemical route to covalently couple the photosystem I (PS I) to
carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to
the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new
photo-induced transport phenomena due to the outstanding optoelectronic
properties of the robust cyanobacteria membrane protein PS I
SUSY structures, representations and Peter-Weyl theorem for
The real compact supergroup is analized from different perspectives
and its representation theory is studied. We prove it is the only (up to
isomorphism) supergroup, which is a real form of
with reduced Lie group , and a link with SUSY structures on is established. We describe a large family of complex semisimple
representations of and we show that any -representation
whose weights are all nonzero is a direct sum of members of our family. We also
compute the matrix elements of the members of this family and we give a proof
of the Peter-Weyl theorem for
Highest weight Harish-Chandra supermodules and their geometric realizations
In this paper we discuss the highest weight -finite
representations of the pair consisting of ,
a real form of a complex basic Lie superalgebra of classical type
(), and the maximal compact subalgebra of
, together with their geometric global realizations. These
representations occur, as in the ordinary setting, in the superspaces of
sections of holomorphic super vector bundles on the associated Hermitian
superspaces .Comment: This article contains of part of the material originally posted as
arXiv:1503.03828 and arXiv:1511.01420. The rest of the material was posted as
arXiv:1801.07181 and will also appear in an enlarged version as subsequent
postin
Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles
It is well known that the category of super Lie groups (SLG) is equivalent to
the category of super Harish-Chandra pairs (SHCP). Using this equivalence, we
define the category of unitary representations (UR's) of a super Lie group. We
give an extension of the classical inducing construction and Mackey
imprimitivity theorem to this setting. We use our results to classify the
irreducible unitary representations of semidirect products of super translation
groups by classical Lie groups, in particular of the super Poincar\'e groups in
arbitrary dimension. Finally we compare our results with those in the physical
literature on the structure and classification of super multiplets.Comment: 55 pages LaTeX, some corrections added after comments by Prof. Pierre
Delign
General covariance violation and the gravitational dark matter. I. Scalar graviton
The violation of the general covariance is proposed as a resource of the
gravitational dark matter. The minimal violation of the covariance to the
unimodular one is associated with the massive scalar graviton as the simplest
representative of such a matter. The Lagrangian formalism for the continuous
medium, the perfect fluid in particular, in the scalar graviton environment is
developed. The implications for cosmology are shortly indicated.Comment: 11 pages; minor correction
Tetrads in SU(3) X SU(2) X U(1) Yang-Mills geometrodynamics
The relationship between gauge and gravity amounts to understanding
underlying new geometrical local structures. These structures are new tetrads
specially devised for Yang-Mills theories, Abelian and Non-Abelian in
four-dimensional Lorentzian spacetimes. In the present manuscript a new tetrad
is introduced for the Yang-Mills SU(3) X SU(2) X U(1) formulation. These new
tetrads establish a link between local groups of gauge transformations and
local groups of spacetime transformations. New theorems are proved regarding
isomorphisms between local internal SU(3) X SU(2) X U(1) groups and local
tensor products of spacetime LB1 and LB2 groups of transformations. The new
tetrads and the stress-energy tensor allow for the introduction of three new
local gauge invariant objects. Using these new gauge invariant objects and in
addition a new general local duality transformation, a new algorithm for the
gauge invariant diagonalization of the Yang-Mills stress-energy tensor is
developed.Comment: There is a new appendix. The unitary transformations by local SU(2)
subgroup elements of a local group coset representative is proved to be a new
local group coset representative. This proof is relevant to the study of the
memory of the local tetrad SU(3) generated gauge transformations. Therefore,
it is also relevant to the group theorems proved in the paper. arXiv admin
note: substantial text overlap with arXiv:gr-qc/060204
Extreme phase and rotated quadrature measurements
We determine the extreme points of the convex set of covariant phase
observables. Such extremals describe the best phase parameter measurements of
laser light - the best in the sense that they are free from classical
randomness due to fluctuations in the measuring procedure. We also characterize
extreme fuzzy rotated quadratures
- …
