27 research outputs found

    Characterization of Desmoglein-3 Epitope Region Peptides as Synthetic Antigens: Analysis of their in vitro T-cell Stimulating Efficacy, Cytotoxicity, Stability and their Conformational Features

    Get PDF
    Desmoglein-3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full-length peptide (Dsg3/189–205, Dsg3/206–222, Dsg3/342–358, and Dsg3/761–777) and its N-terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure–activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20h of stimulation, the interferon (IFN)-γ content of the supernatants was measured by enzyme-linked immunosorbent assay. In the in vitro conditions, peptides were stable and non-cytotoxic. The in vitro IFN-γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342–358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192–205, Dsg3/763–777, and Dsg3/764–777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were themost capable to distinguish between healthy and PV donors

    PREDIVAC: CD4+T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity

    Get PDF
    Background: CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge

    Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes

    Get PDF
    Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100–200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule

    Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT

    Get PDF
    Abstract Background Antibody Directed Enzyme Prodrug Therapy (ADEPT) can be used to generate cytotoxic agents at the tumor site. To date non-human enzymes have mainly been utilized in ADEPT. However, these non-human enzymes are immunogenic limiting the number of times that ADEPT can be administered. To overcome the problem of immunogenicity, a fully human enzyme, capable of converting a non-toxic prodrug to cytotoxic drug was developed and joined to a human tumor specific scFv yielding a fully human targeting agent. Methods A double mutant of human purine nucleoside phosphorylase (hDM) was developed which unlike the human enzyme can cleave adenosine-based prodrugs. For tumor-specific targeting, hDM was fused to the human anti-HER2/neu single chain Fv (scFv), C6 MH3B1. Enzymatic activity of hDM with its natural substrates and prodrugs was determined using spectrophotomeric approaches. A cell proliferation assay was used to assess the cytotoxicity generated following conversion of prodrug to drug as a result of enzymatic activity of hDM. Affinity of the targeting scFv, C6 MH3B1 fused to hDM to Her2/neu was confirmed using affinity chromatography, surface plasmon resonance, and flow-cytometry. Results In vitro hDM-C6 MH3B1 binds specifically to HER2/neu expressing tumor cells and localizes hDM to tumor cells, where the enzymatic activity of hDM-C6 MH3B1, but not the wild type enzyme, results in phosphorolysis of the prodrug, 2-fluoro-2'-deoxyadenosine to the cytotoxic drug 2-fluoroadenine (F-Ade) causing inhibition of tumor cell proliferation. Significantly, the toxic small drug diffuses through the cell membrane of HER2/neu expressing cells as well as cells that lack the expression of HER2/neu, causing a bystander effect. F-Ade is toxic to cells irrespective of their growth rate; therefore, both the slowly dividing tumor cells and the non-dividing neighboring stromal cells that support tumor growth should be killed. Analysis of potential novel MHCII binding peptides resulting from fusion of hDM to C6 MH3B1 and the two mutations in hDM, and of the structure of hDM compared to the wild-type enzyme suggests that hDM-C6 MH3B1 should exhibit minimal immunogenicity in humans. Conclusion hDM-C6 MH3B1 constitutes a novel human based protein that addresses some of the limitations of ADEPT that currently preclude its successful use in the clinic

    Three dimensional structure directs T-cell epitope dominance associated with allergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD4+ T-cell epitope immunodominance is not adequately explained by peptide selectivity in class II major histocompatibility proteins, but it has been correlated with adjacent segments of conformational flexibility in several antigens.</p> <p>Methods</p> <p>The published T-cell responses to two venom allergens and two aeroallergens were used to construct profiles of epitope dominance, which were correlated with the distribution of conformational flexibility, as measured by crystallographic B factors, solvent-accessible surface, COREX residue stability, and sequence entropy.</p> <p>Results</p> <p>Epitopes associated with allergy tended to be excluded from and lie adjacent to flexible segments of the allergen.</p> <p>Conclusion</p> <p>During the initiation of allergy, the N- and/or C-terminal ends of proteolytic processing intermediates were preferentially loaded into antigen presenting proteins for the priming of CD4+ T cells.</p
    corecore