33 research outputs found
Recommended from our members
Revisiting Egyptian Foreign Policy towards Israel under Mubarak: From Cold Peace to Strategic Peace
This article is the first academic study of Egyptian foreign policy towards Israel under Hosni Mubarak (1981–2011). It challenges a deeply entrenched conventional wisdom that Egypt pursued a cold-peace foreign policy towards Israel throughout this period. We demonstrate that Egyptian foreign policy towards Israel was dynamic – comprising cold peace (1981–91), a hybrid foreign policy of cold peace and strategic peace (1991–2003), and a pure strategic peace posture (2003–11). We also use the case of Egyptian foreign policy towards Israel as a heuristic to develop a conception of a new type of peace, strategic peace, as an intermediary analytical category between cold and stable peace
The dynamics between limited-term and lifelong coinfecting bacterial parasites in wild rodent hosts
Recommended from our members
Publisher Correction: FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells.
The originally published version of this Article contained an error in Figure 2. In panel e, the blue bar was incorrectly labelled 'KRT8(+)/TOMATO(-)'. Furthermore, during the process of preparing a correction, the publication date of the Article was inadvertently changed to June 20th 2018. Both of these errors have been corrected in the PDF and HTML versions of the Article
FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells
Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification.Peer reviewe
PRC1 fine-tunes gene repression and activation to safeguard skin development and stem cell specification
Polycomb Repressive Complex 1 Controls Maintenance of Fungiform Papillae by Repressing Sonic Hedgehog Expression
The Signal Peptide of Mouse Mammary Tumor Virus-Env: A Phosphoprotein Tumor Modulator
Abstract
Mouse mammary tumor virus (MMTV) is associated primarily with mammary carcinomas and lymphomas. The signal peptide of the MMTV envelope precursor is uniquely targeted to nucleoli of cells that harbor the virus, where it can function as a nuclear export factor for intron-containing transcripts. Antibodies to this signal peptide, which we refer to as p14, were previously shown to label nucleoli in a subset of human breast cancers. To look for additional cellular functions of p14, different mutants were ectopically expressed in the MCF-7 human breast cancer cell line. This approach identified motifs responsible for its nucleolar targeting, nucleocytoplasmic shuttling, target protein (B23, nucleophosmin) binding, and phosphorylation at serine 18 and 65 both in situ and in vitro. To test the role of these phosphorylation sites, we carried out in vivo tumorigenesis studies in severe combined immunodeficient mice. The findings show that the p14-Ser65Ala mutation is associated with impaired tumorigenicity, whereas the p14-Ser18Ala mutation is associated with enhanced tumorigenicity. Microarray analysis suggests that phosphorylation at serine 18 or at serine 65 is associated with transcriptional regulation of the L5 nucleolar ribosomal protein (a p14 target) and the Erb-B signal transduction pathway. Taken together, these results show that the phosphorylation status of p14 determines whether it functions as a pro-oncogenic or antioncogenic modulator. Mol Cancer Res; 10(8); 1077–86. ©2012 AACR.</jats:p
Polycomb complexes redundantly maintain epidermal stem cell identity during development
Polycomb repressive complex 1 (PRC1) and PRC2 are critical epigenetic developmental regulators. PRC1 and PRC2 largely overlap in their genomic binding and cooperate to establish repressive chromatin domains demarcated by H2AK119ub and H3K27me3. However, the functional contribution of each complex to gene repression has been a subject of debate, and understanding of its physiological significance requires further studies. Here, using the developing murine epidermis as a paradigm, we uncovered a previously unappreciated functional redundancy between Polycomb complexes. Coablation of PRC1 and PRC2 in embryonic epidermal progenitors resulted in severe defects in epidermal stratification, a phenotype not observed in the single PRC1-null or PRC2-null epidermis. Molecular dissection indicated a loss of epidermal identity that was coupled to a strong derepression of nonlineage transcription factors, otherwise repressed by either PRC1 or PRC2 in the absence of its counterpart. Ectopic expression of subsets of PRC1/2-repressed nonepidermal transcription factors in wild-type epidermal stem cells was sufficient to suppress epidermal identity genes, highlighting the importance of functional redundancy between PRC1 and PRC2. Altogether, our studies show how PRC1 and PRC2 function as two independent counterparts, thereby providing a repressive safety net that protects and preserves lineage identity.</jats:p
Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study
AbstractPharmacological treatment of mental disorders is currently decided based on "trial and error" strategy. Mitochondrial multifaceted dysfunction is assumed to be a major factor in the pathophysiology and treatment of schizophrenia (SZ) and bipolar disorder (BD). This study aimed to explore the feasibility of using a profile of mitochondrial function parameters as a tool to predict the optimal drug for an individual patient (personalized medicine). Healthy controls (n = 40), SZ (n = 48) and BD (n = 27) patients were recruited. Mental and global state of the subjects, six mitochondrial respiration parameters and 14 mitochondrial function-related proteins were assessed in fresh lymphocytes following in-vitro or in-vivo treatment with five antipsychotic drugs and two mood-stabilizers. In healthy controls, hierarchal clustering shows a drug-specific effect profile on the different mitochondrial parameters following in-vitro exposure. Similar changes were observed in untreated SZ and BD patients with psychosis. Following a month of treatment of the latter patients, only responders showed a significant correlation between drug-induced in-vitro effect (prior to in-vivo treatment) and short-term in-vivo treatment effect for 45% of the parameters. Long- but not short-term psychotropic treatment normalized mitochondria-related parameters in patients with psychosis. Taken together, these data substantiate mitochondria as a target for psychotropic drugs and provide a proof of concept for selective mitochondrial function-related parameters as a predictive tool for an optimized psychotropic treatment in a given patient. This, however, needs to be repeated with an expanded sample size and additional mitochondria related parameters.</jats:p
