850 research outputs found
Kinematics of galaxies from [CII] line emission
We study the kinematical properties of galaxies in the Epoch of Reionization
via the [CII] 158m line emission. The line profile provides information on
the kinematics as well as structural properties such as the presence of a disk
and satellites. To understand how these properties are encoded in the line
profile, first we develop analytical models from which we identify disk
inclination and gas turbulent motions as the key parameters affecting the line
profile. To gain further insights, we use "Althaea", a highly-resolved () simulated prototypical Lyman Break Galaxy, in the redshift range , when the galaxy is in a very active assembling phase. Based on
morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk,
and III) Disturbed Disk. We identify spectral signatures of merger events,
spiral arms, and extra-planar flows in I), II), and III), respectively. We
derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise
information on the galaxy inclination is (not) available, the returned mass
estimate is accurate within a factor (). A Tully-Fisher relation is
found for the observed high- galaxies, i.e. for which we provide a simple, physically-based
interpretation. Finally, we perform mock ALMA simulations to check the
detectability of [CII]. When seen face-on, Althaea is always detected at ; in the edge-on case it remains undetected because the larger
intrinsic FWHM pushes the line peak flux below detection limit. This suggests
that some of the reported non-detections might be due to inclination effects.Comment: 14 pages, 12 figures, accepted for publication in MNRA
Deep into the structure of the first galaxies: SERRA views
We study the formation and evolution of a sample of Lyman Break Galaxies in
the Epoch of Reionization by using high-resolution (),
cosmological zoom-in simulations part of the SERRA suite. In SERRA, we follow
the interstellar medium (ISM) thermo-chemical non-equilibrium evolution, and
perform on-the-fly radiative transfer of the interstellar radiation field
(ISRF). The simulation outputs are post-processed to compute the emission of
far infrared lines ([CII], [NII], and [OIII]). At , the most massive
galaxy, `Freesia', has an age , stellar mass
, and a star formation rate
, due to a recent burst.
Freesia has two stellar components (A and B) separated by ; other 11 galaxies are found within . The
mean ISRF in the Habing band is and is spatially uniform; in
contrast, the ionisation parameter is , and
has a patchy distribution peaked at the location of star-forming sites. The
resulting ionising escape fraction from Freesia is .
While [CII] emission is extended (radius 1.54 kpc), [OIII] is concentrated in
Freesia-A (0.85 kpc), where the ratio . As many high- galaxies, Freesia lies below the local [CII]-SFR
relation. We show that this is the general consequence of a starburst phase
(pushing the galaxy above the Kennicutt-Schmidt relation) which
disrupts/photodissociates the emitting molecular clouds around star-forming
sites. Metallicity has a sub-dominant impact on the amplitude of [CII]-SFR
deviations.Comment: 22 pages, 14 figures, accepted by MNRA
Is there any evidence that ionised outflows quench star formation in type 1 quasars at z<1?
The aim of this paper is to test the basic model of negative AGN feedback.
According to this model, once the central black hole accretes at the Eddington
limit and reaches a certain critical mass, AGN driven outflows blow out gas,
suppressing star formation in the host galaxy and self-regulating black hole
growth. We consider a sample of 224 quasars selected from the SDSS at z<1
observed in the infrared band by Herschel. We evaluate the star formation rate
in relation to several outflow signatures traced by the [OIII]4959,5007 and
[OII]3726,3729 emission lines in about half of the sample with high quality
spectra. Most of the quasars show asymmetric and broad wings in [OIII], which
we interpret as outflow signatures. We separate the quasars in two groups,
``weakly'' and ``strongly'' outflowing, using three different criteria. When we
compare the mean star formation rate in five redshift bins in the two groups,
we find that the SFRs are comparable or slightly larger in the strongly
outflowing quasars. We estimate the stellar mass from SED fitting and the
quasars are distributed along the star formation main sequence, although with a
large scatter. The scatter from this relation is uncorrelated with respect to
the kinematic properties of the outflow. Moreover, for quasars dominated in the
infrared by starburst or by AGN emission, we do not find any correlation
between the star formation rate and the velocity of the outflow, a trend
previously reported in the literature for pure starburst galaxies. We conclude
that the basic AGN negative feedback scenario seems not to agree with our
results. Although we use a large sample of quasars, we did not find any
evidence that the star formation rate is suppressed in the presence of AGN
driven outflows on large scale. A possibility is that feedback is effective
over much longer timescales than those of single episodes of quasar activity.Comment: 18 pages, new version that implements the suggestions of the referee
and matches the AA published versio
ALMA Detection of Extended [C II] Emission in Himiko at z = 6.6
Himiko is one of the most luminous Ly{\alpha} emitters at z = 6.595. It has
three star forming clumps detected in the rest-frame UV, with a total SFR = 20
M/yr. We report the ALMA detection of the [CII]158m line emission
in this galaxy with a significance of 9. The total [CII] luminosity
(L[CII]= (1.20.2)10 L) is fully consistent with
the local L[CII]-SFR relation. The ALMA high-angular resolution reveals that
the [CII] emission is made of two distinct components. The brightest [CII]
clump is extended over 4 kpc and is located on the peak of the Ly{\alpha}
nebula, which is spatially offset by 1 kpc relative to the brightest UV clump.
The second [CII] component is spatially unresolved (size 2 kpc) and
coincident with one of the three UV clumps. While the latter component is
consitent with the local L[CII]-SFR relation, the other components are
scattered above and below the local relation. We shortly discuss the possible
origin of the [CII] components and their relation with the star forming clumps
traced by the UV emission
The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow
We present the best sensitivity and angular resolution maps of the molecular
disk and outflow of Mrk 231, as traced by CO observations obtained with
IRAM/PdBI, and we analyze archival Chandra and NuSTAR observations. We
constrain the physical properties of both the molecular disk and outflow, the
presence of a highly-ionized ultra-fast nuclear wind, and their connection. The
molecular outflow has a size of ~1 kpc, and extends in all directions around
the nucleus, being more prominent along the south-west to north-east direction,
suggesting a wide-angle biconical geometry. The maximum projected velocity of
the outflow is nearly constant out to ~1 kpc, thus implying that the density of
the outflowing material decreases from the nucleus outwards as . This
suggests that either a large part of the gas leaves the flow during its
expansion or that the bulk of the outflow has not yet reached out to ~1 kpc,
thus implying a limit on its age of ~1 Myr. We find and erg s.
Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow
(UFO) with velocity -20000 km s, , and momentum load .We find as predicted for outflows undergoing an energy
conserving expansion. This suggests that most of the UFO kinetic energy is
transferred to mechanical energy of the kpc-scale outflow, strongly supporting
that the energy released during accretion of matter onto super-massive black
holes is the ultimate driver of giant massive outflows. We estimate a momentum
boost . The ratios and agree
with the requirements of the most popular models of AGN feedback.Comment: 16 pages, 17 figures. Accepted for publication in A&
Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA
We performed a kinematical analysis of the [CII] line emission of the BR
1202-0725 system at z~4,7 using ALMA observations. The most prominent sources
of this system are a quasar and a submillimeter galaxy, separated by a
projected distance of about 24 kpc and characterized by very high SFR, higher
than 1000 Msun/yr. However, the ALMA observations reveal that these galaxies
apparently have undisturbed rotating disks, which is at variance with the
commonly accepted scenario in which strong star formation activity is induced
by a major merger. We also detected faint components which, after spectral
deblending, were spatially resolved from the main QSO and SMG emissions. The
relative velocities and positions of these components are compatible with
orbital motions within the gravitational potentials generated by the QSO host
galaxy and the SMG, suggesting that they are smaller galaxies in interaction or
gas clouds in accretion flows of tidal streams. We did not find any clear
spectral evidence for outflows caused by AGN or stellar feedback. This suggests
that the high star formation rates might be induced by interactions or minor
mergers with these companions, which do not affect the large-scale kinematics
of the disks, however. Our kinematical analysis also indicates that the QSO and
the SMG have similar Mdyn, mostly in the form of molecular gas, and that the
QSO host galaxy and the SMG are seen close to face-on with slightly different
disk inclinations: the QSO host galaxy is seen almost face-on (i~15), while the
SMG is seen at higher inclinations (i~25). Finally, the ratio between the black
hole mass of the QSO, obtained from XShooter spectroscopy, and the Mdyn of the
host galaxy is similar to value found in very massive local galaxies,
suggesting that the evolution of black hole galaxy relations is probably better
studied with dynamical than with stellar host galaxy masses.Comment: Accepted for publication in Astronomy and Astrophysic
The assembly of "normal" galaxies at z=7 probed by ALMA
We report new deep ALMA observations aimed at investigating the [CII]158um
line and continuum emission in three spectroscopically confirmed Lyman Break
Galaxies at 6.8<z<7.1, i.e. well within the re-ionization epoch. With Star
Formation Rates of SFR ~ 5-15 Msun/yr these systems are much more
representative of the high-z galaxy population than other systems targeted in
the past by millimeter observations. For the galaxy with the deepest
observation we detect [CII] emission at redshift z=7.107, fully consistent with
the Lyalpha redshift, but spatially offset by 0.7" (4 kpc) from the optical
emission. At the location of the optical emission, tracing both the Lyalpha
line and the far-UV continuum, no [CII] emission is detected in any of the
three galaxies, with 3sigma upper limits significantly lower than the [CII]
emission observed in lower reshift galaxies. These results suggest that
molecular clouds in the central parts of primordial galaxies are rapidly
disrupted by stellar feedback. As a result, [CII] emission mostly arises from
more external accreting/satellite clumps of neutral gas. These findings are in
agreement with recent models of galaxy formation. Thermal far-infrared
continuum is not detected in any of the three galaxies. However, the upper
limits on the infrared-to-UV emission ratio do not exceed those derived in
metal- and dust-poor galaxies.Comment: 15 pages, 9 figures, MNRAS in press, replaced with accepted versio
The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE
We study the ionization and kinematics of the ionized gas in the nuclear
region of the barred Seyfert 2 galaxy NGC~5643 using MUSE integral field
observations in the framework of the MAGNUM (Measuring Active Galactic Nuclei
Under MUSE Microscope) survey. The data were used to identify regions with
different ionization conditions and to map the gas density and the dust
extinction. We find evidence for a double sided ionization cone, possibly
collimated by a dusty structure surrounding the nucleus. At the center of the
ionization cone, outflowing ionized gas is revealed as a blueshifted,
asymmetric wing of the [OIII] emission line, up to projected velocity
v(10)~-450 km/s. The outflow is also seen as a diffuse, low luminosity radio
and X-ray jet, with similar extension. The outflowing material points in the
direction of two clumps characterized by prominent line emission with spectra
typical of HII regions, located at the edge of the dust lane of the bar. We
propose that the star formation in the clumps is due to `positive feedback'
induced by gas compression by the nuclear outflow, providing the first
candidate for outflow induced star formation in a Seyfert-like radio quiet AGN.
This suggests that positive feedback may be a relevant mechanism in shaping the
black hole-host galaxy coevolution.Comment: 9 pages, 7 figures, accepted for publication in A&
Ionised outflows in z 2.4 quasar host galaxies
AGN-driven outflows are invoked by galaxy evolutionary models to quench star
formation and to explain the origin of the relations observed locally between
super massive black holes and their host galaxies. This work aims to detect the
presence of extended ionised outflows in luminous quasars where we expect the
maximum activity both in star formation and in black hole accretion. Currently,
there are only a few studies based on spatially resolved observations of
outflows at high redshift, . We analyse a sample of six luminous () quasars at , observed in H-band using the
near-IR integral field spectrometer SINFONI at VLT. We perform a kinematic
analysis of the [OIII] emission line at . [OIII] has a
complex gas kinematic, with blue-shifted velocities of a few hundreds of km/s
and line widths up to 1500 km/s. Using the spectroastrometric method we infer
size of the ionised outflows of up to 2 kpc. The properties of the
ionised outflows, mass outflow rate, momentum rate and kinetic power, are
correlated with the AGN luminosity. The increase in outflow rate with
increasing AGN luminosity is consistent with the idea that a luminous AGN
pushes away the surrounding gas through fast outflows driven by radiation
pressure, which depends on the emitted luminosity. We derive mass outflow rates
of about 6-700 M/yr for our sample, which are lower than those
observed in molecular outflows. Indeed physical properties of ionised outflows
show dependences on AGN luminosity which are similar to those of molecular
outflows but indicating that the mass of ionised gas is smaller than that of
the molecular one. Alternatively, this discrepancy between ionised and
molecular outflows could be explained with different acceleration mechanisms.Comment: 13 pages, 11 figures; accepted for publication in A&
- …
