16 research outputs found

    Preclinical development of a stabilized RH5 virus-like particle vaccine that induces improved antimalarial antibodies

    Get PDF
    Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials

    Thymidine kinase of mycoplasmic origin - an enzyme with lasso

    Full text link

    Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil

    No full text
    Bacterial infections provide diagnostic dilemmas that could be enlightened by modern imaging technologies. We have developed a simple method for imaging bacterial infections in mice that relies on the phosphorylation and trapping of the thymidine kinase (TK) substrate 1-(2′-deoxy-2′-fluoro-β-d-arabinofuranosyl)-5-[(125)I] iodouracil ([(125)I]FIAU) within bacteria. FIAU was found to inhibit the growth of WT Escherichia coli but not a TK(–) strain, indicating that WT E. coli could metabolize this compound. In silico analyses demonstrated that all pathogenic strains of bacteria whose genomes have been sequenced contain a TK gene highly homologous to the E. coli TK. Accordingly, we demonstrated that localized infections caused by representatives of five genera of bacteria could be readily imaged with [(125)I]FIAU. Such imaging provides a general method for the diagnosis of localized bacterial infections that could be translatable to the clinic

    A randomized first-in-human phase I trial of differentially adjuvanted Pfs48/45 malaria vaccines in Burkinabé adults

    No full text
    BACKGROUNDMalaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODSThe candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36-amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 μg or 100 μg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 μg or 50 μg, respectively). The allocation was random and double-blind for this phase I trial.RESULTSThe vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 μg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSIONAll formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATIONPan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDINGThe study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).</p
    corecore