6 research outputs found

    VAMP3 regulates podosome organisation in macrophages and together with Stx4/SNAP23 mediates adhesion, cell spreading and persistent migration

    No full text
    The ability of cells to adhere, spread and migrate is essential to many physiological processes, particularly in the immune system where cells must traffic to sites of inflammation and injury. By altering the levels of individual components of the VAMP3/Stx4/SNAP23 complex we show here that this SNARE complex regulates efficient macrophage adhesion, spreading and migration on fibronectin. During cell spreading this complex mediates the polarised exocytosis of VAMP3- positive recycling endosome membrane into areas of membrane expansion, where VAMP3's surface partner Q-SNARE complex Stx4/SNAP23 was found to accumulate. Lowering the levels of VAMP3 in spreading cells resulted in a more rounded cell morphology and most cells were found to be devoid of the typical ring-like podosome superstructures seen normally in spreading cells. In migrating cells lowering VAMP3 levels disrupted the polarised localisation of podosome clusters. The reduced trafficking of recycling endosome membrane to sites of cell spreading and the disorganised podosome localisation in migrating macrophages greatly reduced their ability to persistently migrate on fibronectin. Thus, this important SNARE complex facilitates macrophage adhesion, spreading, and persistent macrophage migration on fibronectin through the delivery of VAMP3-positive membrane with its cargo to expand the plasma membrane and to participate in organising adhesive podosome structures

    A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma

    No full text
    Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.Full Tex

    TMIC-01. THE DYSTROGLYCAN RECEPTOR MAINTAINS GLIOMA STEM CELLS IN THE VASCULAR NICHE

    Full text link
    Abstract Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding alpha (α) subunit of the dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the vascular niche. Glycosylated αDG is also expressed highly on the most aggressive mesenchymal-like GBM tumour tissue. Furthermore, we found that DG acts to maintain a de-differentiated stem cell-like phenotype via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor not only as a structural element but also as a critical factor in the maintenance of GSCs in the GBM vascular niche.</jats:p
    corecore