12,204 research outputs found
Community Ecology and Capacity: Advancing Environmental Communication Strategies among Diverse Stakeholders
1. Introduction Many socioeconomically and geographically diverse communities in the United States have been challenged by occurrences of environmental contamination and the related complex public health issues. The investigations associated with such concerns have traditionally been the responsibility of governmental agencies. Communities facing potential environmental exposures often believe that government-based environmental agencies are not adequately addressing their concerns regarding risk, thus resulting in their misunderstanding and distrust of the regulatory process. A schism develops whereby the community perceives that government is either not doing enough to address their concerns and/or are being influenced by the relevant industry. The governmental agencies involved perceive that the community possesses an inaccurate or irrational perception of the potential risks. As a result, a stressful relationship often arises. Recommendations for effective risk communication have been developed and published (Covello & Sandman, 2001; Hance et al., 1989; Sandman, 1989). Research has also demonstrated the importance of developing relationships among stakeholders and its impact on information delivery and reception (ATSDR, 2004). Given that stakeholder groups perceive risk differently, it is imperative for each group to appreciate the viewpoints of all involved to engage in effective dialog (Park et al., 2001; Tinker et al., 2001). Cox (2006) defines environmental communication as “…the pragmatic and constitutive vehicle for our understanding of the environment as well as our relationships to the natural world; it is the symbolic medium that we use in constructing environmental problems and negotiating society’s different responses to them.” Although opportunities for public participation in environmental assessments have greatly increased, the environmental communication process among key stakeholders needs further evaluation (Charnley & Engelbert, 2005; McKinney & Harmon, 2002). The purpose of this chapter is to describe an evaluative process to develop and propose recommendations that could improve the environmental communication that occurs among diverse stakeholders, such as an environmental regulation and protection agency, waste disposal and energy producing facilities, community activists and the general public. Two case studies will be presented; the first describes the management of environmental permitting decisions in several disparate communities; and the second describes the management and perception of health risks from a single-owner waste-to-energy facility in two distinct communities. To accomplish this goal, this chapter will: 1.) examine how a state environmental agency and waste disposal and energy producing facilities describe their environmental communication experiences regarding various permitting operations and the risk perceptions of the impacted communities; 2.) identify effective communication methods; 3.) discuss the strengths and limitations of these activities; and 4.) propose recommendations for practitioners to advance environmental communication strategies among these key stakeholders
A Study of Non-Neutral Networks with Usage-based Prices
Hahn and Wallsten wrote that network neutrality "usually means that broadband
service providers charge consumers only once for Internet access, do not favor
one content provider over another, and do not charge content providers for
sending information over broadband lines to end users." In this paper we study
the implications of non-neutral behaviors under a simple model of linear
demand-response to usage-based prices. We take into account advertising
revenues and consider both cooperative and non-cooperative scenarios. In
particular, we model the impact of side-payments between service and content
providers. We also consider the effect of service discrimination by access
providers, as well as an extension of our model to non-monopolistic content
providers
Magnetostructural study of the (Mn,Fe)3(P,Si) system
Using X-ray diffraction, DSC and magnetization measurements, a
magnoestructural map of the (Mn,Fe)3(Si,P) system was assembled and reported in
the current paper. Besides the already known cubic phase for Mn3-xFexSi system
and the tetragonal and orthorhombic phases for the Mn3-xFexP system, a novel
hexagonal phase has been observed for Mn3 xFexSi1-yPy, within the approximate
range of 0.2<x<2.0 and 0.2<y<0.9. Magnetization measurements both confirm and
further detail the already known properties of the Mn3-xFexSi and Mn3-xFexP
systems.Comment: Paper has been accepted, reviewed and proofed for publication in the
Journal of Alloys and Compounds, but is not yet publishe
Fluctuation, dissipation, and thermalization in non-equilibrium AdS_5 black hole geometries
We give a simple recipe for computing dissipation and fluctuations
(commutator and anti-commutator correlation functions) for non-equilibrium
black hole geometries. The recipe formulates Hawking radiation as an initial
value problem, and is suitable for numerical work. We show how to package the
fluctuation and dissipation near the event horizon into correlators on the
stretched horizon. These horizon correlators determine the bulk and boundary
field theory correlation functions. In addition, the horizon correlators are
the components of a horizon effective action which provides a quantum
generalization of the membrane paradigm. In equilibrium, the analysis
reproduces previous results on the Brownian motion of a heavy quark. Out of
equilibrium, Wigner transforms of commutator and anti-commutator correlation
functions obey a fluctuation-dissipation relation at high frequency.Comment: 28 pages, 6 figure
Absorbing systematic effects to obtain a better background model in a search for new physics
This paper presents a novel approach to estimate the Standard Model
backgrounds based on modifying Monte Carlo predictions within their systematic
uncertainties. The improved background model is obtained by altering the
original predictions with successively more complex correction functions in
signal-free control selections. Statistical tests indicate when sufficient
compatibility with data is reached. In this way, systematic effects are
absorbed into the new background model. The same correction is then applied on
the Monte Carlo prediction in the signal region. Comparing this method to other
background estimation techniques shows improvements with respect to statistical
and systematical uncertainties. The proposed method can also be applied in
other fields beyond high energy physics
New Representations of the Perturbative S-Matrix
We propose a new framework to represent the perturbative S-matrix which is
well-defined for all quantum field theories of massless particles, constructed
from tree-level amplitudes and integrable term-by-term. This representation is
derived from the Feynman expansion through a series of partial fraction
identities, discarding terms that vanish upon integration. Loop integrands are
expressed in terms of "Q-cuts" that involve both off-shell and on-shell
loop-momenta, defined with a precise contour prescription that can be evaluated
by ordinary methods. This framework implies recent results found in the
scattering equation formalism at one-loop, and it has a natural extension to
all orders---even non-planar theories without well-defined forward limits or
good ultraviolet behavior.Comment: 4+1 pages, 4 figure
Two-sample Bayesian Nonparametric Hypothesis Testing
In this article we describe Bayesian nonparametric procedures for two-sample
hypothesis testing. Namely, given two sets of samples
\stackrel{\scriptscriptstyle{iid}}{\s
im} and \stackrel{\scriptscriptstyle{iid}}{\sim},
with unknown, we wish to
evaluate the evidence for the null hypothesis
versus the
alternative . Our
method is based upon a nonparametric P\'{o}lya tree prior centered either
subjectively or using an empirical procedure. We show that the P\'{o}lya tree
prior leads to an analytic expression for the marginal likelihood under the two
hypotheses and hence an explicit measure of the probability of the null
.Comment: Published at http://dx.doi.org/10.1214/14-BA914 in the Bayesian
Analysis (http://projecteuclid.org/euclid.ba) by the International Society of
Bayesian Analysis (http://bayesian.org/
Colour-electric spectral function at next-to-leading order
The spectral function related to the correlator of two colour-electric fields
along a Polyakov loop determines the momentum diffusion coefficient of a heavy
quark near rest with respect to a heat bath. We compute this spectral function
at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The
high-frequency part of our result (omega >> T), which is shown to be
temperature-independent, is accurately determined thanks to asymptotic freedom;
the low-frequency part of our result (omega << T), in which Hard Thermal Loop
resummation is needed in order to cure infrared divergences, agrees with a
previously determined expression. Our result may help to calibrate the overall
normalization of a lattice-extracted spectral function in a perturbative
frequency domain T << omega << 1/a, paving the way for a non-perturbative
estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate
the colour-electric Euclidean correlator, which could be directly compared with
lattice simulations. As an aside we determine the Euclidean correlator in the
lattice strong-coupling expansion, showing that through a limiting procedure it
can in principle be defined also in the confined phase of pure Yang-Mills
theory, even if a practical measurement could be very noisy there.Comment: 38 page
- …
