8,690 research outputs found
A First Step Towards Automatically Building Network Representations
To fully harness Grids, users or middlewares must have some knowledge on the
topology of the platform interconnection network. As such knowledge is usually
not available, one must uses tools which automatically build a topological
network model through some measurements. In this article, we define a
methodology to assess the quality of these network model building tools, and we
apply this methodology to representatives of the main classes of model builders
and to two new algorithms. We show that none of the main existing techniques
build models that enable to accurately predict the running time of simple
application kernels for actual platforms. However some of the new algorithms we
propose give excellent results in a wide range of situations
Colour-electric spectral function at next-to-leading order
The spectral function related to the correlator of two colour-electric fields
along a Polyakov loop determines the momentum diffusion coefficient of a heavy
quark near rest with respect to a heat bath. We compute this spectral function
at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The
high-frequency part of our result (omega >> T), which is shown to be
temperature-independent, is accurately determined thanks to asymptotic freedom;
the low-frequency part of our result (omega << T), in which Hard Thermal Loop
resummation is needed in order to cure infrared divergences, agrees with a
previously determined expression. Our result may help to calibrate the overall
normalization of a lattice-extracted spectral function in a perturbative
frequency domain T << omega << 1/a, paving the way for a non-perturbative
estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate
the colour-electric Euclidean correlator, which could be directly compared with
lattice simulations. As an aside we determine the Euclidean correlator in the
lattice strong-coupling expansion, showing that through a limiting procedure it
can in principle be defined also in the confined phase of pure Yang-Mills
theory, even if a practical measurement could be very noisy there.Comment: 38 page
Density Matrices for a Chain of Oscillators
We consider chains with an optical phonon spectrum and study the reduced
density matrices which occur in density-matrix renormalization group (DMRG)
calculations. Both for one site and for half of the chain, these are found to
be exponentials of bosonic operators. Their spectra, which are correspondingly
exponential, are determined and discussed. The results for large systems are
obtained from the relation to a two-dimensional Gaussian model.Comment: 15 pages,8 figure
How to compute the thermal quarkonium spectral function from first principles?
In the limit of a high temperature T and a large quark-mass M, implying a
small gauge coupling g, the heavy quark contribution to the spectral function
of the electromagnetic current can be computed systematically in the
weak-coupling expansion. We argue that the scale hierarchy relevant for
addressing the disappearance ("melting") of the resonance peak from the
spectral function reads M >> T > g^2 M > gT >> g^4 M, and review how the heavy
scales can be integrated out one-by-one, to construct a set of effective field
theories describing the low-energy dynamics. The parametric behaviour of the
melting temperature in the weak-coupling limit is specified.Comment: 8 pages; to appear in the Proceedings of SEWM08, Amsterdam, the
Netherlands, August 26-29, 200
Tools for understanding the agricultural production systems and their socio-economic context in target regions for the introduction of new banana cultivars: baseline intra-household survey.
Within the framework of the IITA-led project “Improvement of banana for smallholder farmers in the Great Lakes region of Africa” (also known as the “Breeding Better Bananas” project, http://breedingbetterbananas.org), Bioversity International and partners conducted baseline research in the target regions of Luwero and Mbarara in Uganda, and Bukoba, Meru, Moshi and Rungwe in Tanzania during 2015-2016, prior to conducting on-station and on-farm evaluations of the new NARITA banana cultivars.
Five tools were used to characterise the banana and agricultural production systems, and the socioeconomic context of these systems, in the target regions. The research used a mixed-methods, participatory and sex-disaggregated approach to ensure that the knowledge, experiences and opinions of as many people as possible were obtained.
The understanding gained from the baseline research will:
• Be fed into the banana breeding pipeline at multiple entry points to assist with breeding banana cultivars that better meet the requirements of the users. Some of these entry points are: setting of breeding targets; selection of parent material; evaluation in regional on-station and on-farm trials; participatory varietal selection taking into account the criteria (or ‘trait preferences’) that are important to multiple and different users; facilitating access to and adoption of the new cultivars by farmers and other end-users through scaling up the supply of clean planting materials and ensuring equitable distribution of these through the ‘seed’ systems.
• Inform the ongoing adaptive management of the project activities to ensure fair participation and decision-making by people in the affected communities.
• Provide the baseline to evaluate, in conjunction with the endline, the impact of adoption of the new cultivars on households, and individuals within, in the target regions
To the practical design of the optical lever intracavity topology of gravitational-wave detectors
The QND intracavity topologies of gravitational-wave detectors proposed
several years ago allow, in principle, to obtain sensitivity significantly
better than the Standard Quantum Limit using relatively small anount of optical
pumping power. In this article we consider an improved more ``practical''
version of the optical lever intracavity scheme. It differs from the original
version by the symmetry which allows to suppress influence of the input light
amplitude fluctuation. In addition, it provides the means to inject optical
pumping inside the scheme without increase of optical losses.
We consider also sensitivity limitations imposed by the local meter which is
the key element of the intracavity topologies. Two variants of the local meter
are analyzed, which are based on the spectral variation measurement and on the
Discrete Sampling Variation Measurement, correspondingly. The former one, while
can not be considered as a candidate for a practical implementation, allows, in
principle, to obtain the best sensitivity and thus can be considered as an
ideal ``asymptotic case'' for all other schemes. The DSVM-based local meter can
be considered as a realistic scheme but its sensitivity, unfortunately, is by
far not so good just due to a couple of peculiar numeric factors specific for
this scheme.
From our point of view search of new methods of mechanical QND measurements
probably based on improved DSVM scheme or which combine the local meter with
the pondermotive squeezing technique, is necessary.Comment: 27 pages, 6 figure
Phase diagram of the one-dimensional Holstein model of spinless fermions
The one-dimensional Holstein model of spinless fermions interacting with
dispersionless phonons is studied using a new variant of the density matrix
renormalisation group. By examining various low-energy excitations of finite
chains, the metal-insulator phase boundary is determined precisely and agrees
with the predictions of strong coupling theory in the anti-adiabatic regime and
is consistent with renormalisation group arguments in the adiabatic regime. The
Luttinger liquid parameters, determined by finite-size scaling, are consistent
with a Kosterlitz-Thouless transition.Comment: Minor changes. 4 pages, 4 figures. To appear in Physical Review
Letters 80 (1998) 560
Electronic and Magnetic Structures of Chain Structured Iron Selenide Compounds
Electronic and magnetic structures of iron selenide compounds Ce2O2FeSe2
(2212\ast) and BaFe2Se3(123\ast) are studied by the first-principles
calculations. We find that while all these compounds are composed of
one-dimensional (1D) Fe chain (or ladder) structures, their electronic
structures are not close to be quasi-1D. The magnetic exchange couplings
between two nearest-neighbor (NN) chains in 2212\ast and between two NN
two-leg-ladders in 123\ast are both antiferromagnetic (AFM), which is
consistent with the presence of significant third NN AFM coupling, a common
feature shared in other iron-chalcogenides, FeTe (11\ast) and KyFe2-xSe2
(122\ast). In magnetic ground states, each Fe chain of 2212\ast is
ferromagnetic and each two-leg ladder of 123\ast form a block-AFM structure. We
suggest that all magnetic structures in iron-selenide compounds can be unified
into an extended J1-J2-J3 model. Spin-wave excitations of the model are
calculated and can be tested by future experiments on these two systems.Comment: 6 pages, 6 figures, 2 table
Metal-insulator transition in the one-dimensional Holstein model at half filling
We study the one-dimensional Holstein model with spin-1/2 electrons at
half-filling. Ground state properties are calculated for long chains with great
accuracy using the density matrix renormalization group method and extrapolated
to the thermodynamic limit. We show that for small electron-phonon coupling or
large phonon frequency, the insulating Peierls ground state predicted by
mean-field theory is destroyed by quantum lattice fluctuations and that the
system remains in a metallic phase with a non-degenerate ground state and
power-law electronic and phononic correlations. When the electron-phonon
coupling becomes large or the phonon frequency small, the system undergoes a
transition to an insulating Peierls phase with a two-fold degenerate ground
state, long-range charge-density-wave order, a dimerized lattice structure, and
a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure
Gravitational waves about curved backgrounds: a consistency analysis in de Sitter spacetime
Gravitational waves are considered as metric perturbations about a curved
background metric, rather than the flat Minkowski metric since several
situations of physical interest can be discussed by this generalization. In
this case, when the de Donder gauge is imposed, its preservation under
infinitesimal spacetime diffeomorphisms is guaranteed if and only if the
associated covector is ruled by a second-order hyperbolic operator which is the
classical counterpart of the ghost operator in quantum gravity. In such a wave
equation, the Ricci term has opposite sign with respect to the wave equation
for Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate
the solutions of the two problems, and the algorithm is applied to the case
when the curved background geometry is the de Sitter spacetime. Such vector
wave equations are studied in two different ways: i) an integral
representation, ii) through a solution by factorization of the hyperbolic
equation. The latter method is extended to the wave equation of metric
perturbations in the de Sitter spacetime. This approach is a step towards a
general discussion of gravitational waves in the de Sitter spacetime and might
assume relevance in cosmology in order to study the stochastic background
emerging from inflation.Comment: 17 pages. Misprints amended in Eqs. 50, 54, 55, 75, 7
- …
