570 research outputs found

    A Survey Of IPv6 Address Usage In The Public Domain Name System

    Get PDF
    The IPv6 protocol has been slowly increasing in use on the Internet. The main reason for the development of the protocol is that the address space provided by IPv4 is nearing exhaustion. The pool of addresses provided by IPv6 is 296 times larger than IPv4, and should be sufficient to provide an address for every device for the foreseeable future. Another potential advantage of this significantly large address space is the use of randomly assigned addresses as a security barrier as part of a defence in depth strategy. This research examined the addresses allocated by those implementing IPv6 to determine what method or pattern of allocation was being used by adopters of the protocol. This examination was done through the use of DNS queries of the AAAA IPv6 host record using public DNS servers. It was observed that 55.84% of IPv6 addresses were in the range of 0 to (232 − 1). For those addresses with unique interface identifier (IID) portions, a nearly equal number of sequential and random IIDs were observed. Hong Kong and Germany were found to have the greatest number of IPv6 addresses. These results suggest that adopters are allocating most addresses sequentially, meaning that no security advantage is being obtained. It is unclear as to whether this is through design or the following of accepted practice. Future research will continue to survey the IPv6 address space to determine whether the patterns observed here remain constant

    Exchanging demands: Weaknesses in SSL implementations for mobile platforms

    Get PDF
    The ActiveSync protocol’s implementation on some embedded devices leaves clients vulnerable to unauthorised remote policy enforcement. This paper discusses a proof of concept attack against the implementation of ActiveSync in common Smart phones including Android devices and iOS devices. A two‐phase approach to exploiting the ActiveSync protocol is introduced. Phase 1 details the usage of a man‐in‐the‐middle attack to gain a vantage point over the client device, whilst Phase 2 involves spoofing the server‐side ActiveSync responses to initiate the unauthorised policy enforcement. These vulnerabilities are demonstrated by experiment, highlighting how the system can be exploited to perform a remote factory reset upon an Exchange‐integrated Smart phone

    An investigation into Off-Link IPv6 host enumeration search methods

    Get PDF
    This research investigated search methods for enumerating networked devices on off-link 64 bit Internet Protocol version 6 (IPv6) subnetworks. IPv6 host enumeration is an emerging research area involving strategies to enable detection of networked devices on IPv6 networks. Host enumeration is an integral component in vulnerability assessments (VAs), and can be used to strengthen the security profile of a system. Recently, host enumeration has been applied to Internet-wide VAs in an effort to detect devices that are vulnerable to specific threats. These host enumeration exercises rely on the fact that the existing Internet Protocol version 4 (IPv4) can be exhaustively enumerated in less than an hour. The same is not true for IPv6, which would take over 584,940 years to enumerate a single network. As such, research is required to determine appropriate host enumeration search methods for IPv6, given that the protocol is seeing increase global usage. For this study, a survey of Internet resources was conducted to gather information about the nature of IPv6 usage in real-world scenarios. The collected survey data revealed patterns in the usage of IPv6 that influenced search techniques. The research tested the efficacy of various searching algorithms against IPv6 datasets through the use of simulation. Multiple algorithms were devised to test different approaches to host enumeration against 64 bit IPv6 subnetworks. Of these, a novel adaptive heuristic search algorithm, a genetic algorithm and a stripe search algorithm were chosen to conduct off-link IPv6 host enumeration. The suitability of a linear algorithm, a Monte Carlo algorithm and a pattern heuristics algorithm were also tested for their suitability in searching off-link IPv6 networks. These algorithms were applied to two test IPv6 address datasets, one comprised of unique IPv6 data observed during the survey phase, and one comprised of unique IPv6 data generated using pseudorandom number generators. Searching against the two unique datasets was performed in order to determine appropriate strategies for off-link host enumeration under circumstances where networked devices were configured with addresses that represented real-word IPv6 addresses, and where device addresses were configured through some randomisation function. Whilst the outcomes of this research support that an exhaustive enumeration of an IPv6 network is infeasible, it has been demonstrated that devices on IPv6 networks can be enumerated. In particular, it was identified that the linear search technique and the variants tested in this study (pattern search and stripe search), remained the most consistent means of enumerating an IPv6 network. Machine learning methods were also successfully applied to the problem. It was determined that the novel adaptive heuristic search algorithm was an appropriate candidate for search operations. The adaptive heuristic search algorithm successfully enumerated over 24% of the available devices on the dataset that was crafted from surveyed IPv6 address data. Moreover, it was confirmed that stochastic address generation can reduce the effectiveness of enumeration strategies, as all of the algorithms failed to enumerate more than 1% of hosts against a pseudorandomly generated dataset. This research highlights a requirement for effective IPv6 host enumeration algorithms, and presents and validates appropriate methods. The methods presented in this thesis can help to influence the tools and utilities that are used to conduct host enumeration exercises

    Coherent ultrafast spin-dynamics probed in three dimensional topological insulators

    Get PDF
    Topological insulators are candidates to open up a novel route in spin based electronics. Different to traditional ferromagnetic materials, where the carrier spin-polarization and magnetization are based on the exchange interaction, the spin properties in topological insulators are based on the coupling of spin- and orbit interaction connected to its momentum. Specific ways to control the spin-polarization with light have been demonstrated: the energy momentum landscape of the Dirac cone provides spin-momentum locking of the charge current and its spin. The directionality of spin and momentum, as well as control with light has been demonstrated. Here we demonstrate a coherent femtosecond control of spin-polarization for states in the valence band at around the Dirac cone.Comment: 14 pages, 4 figure

    Using passive and active enumeration methods to improve IPv6 host enumeration search algorithms

    Get PDF
    IPv6 off-link host enumeration, when compared to IPv4 host enumeration, is a difficult and expensive exercise. The expense arises from the difference in address space sizes between the two protocols, with IPv6 having a 296 larger address space than that of IPv4. This paper presents an algorithm for performing contextual IPv6 host enumeration against a target. The algorithm uses passive and active enumeration in order to focus the search upon areas of the address space where it is more probable that targets will exist. Experiments were conducted to test the proposed adaptive heuristic search algorithm involving applying the algorithm to a test dataset of IPv6 addresses, measuring the results and comparing those to a linear search against the same datasets. This research shows that the adaptive heuristic search algorithm achieved an average of 9,975 successful hits per simulation when applied to a dataset of realistic IPv6 addresses, whilst the linear search had an average of 8,642 when applied to the same dataset. Both algorithms performed poorly when applied to a dataset comprising randomly generated IPv6 addresses. The results show that the algorithm provides a good candidate for IPv6 off-link host enumeration, as it outperformed the linear search on average, whilst using less probes to do so

    Circular dichroism in angle-resolved photoemission spectroscopy of topological insulators

    Get PDF
    Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and future spin-based applications. In this article, we review the recent experimental and theoretical studies on the differential coupling of left- versus right-circularly polarized light to the topological surface states in angle-resolved photoemission spectroscopy. These studies have shown that the polarization of light and the experimental geometry plays a very important role in both photocurrent intensity and spin polarization of photoelectrons emitted from the topological surface states. A general photoemission matrix element calculation with spin-orbit coupling can quantitatively explain the observations and is also applicable to topologically trivial systems. These experimental and theoretical investigations suggest that optical excitation with circularly polarized light is a promising route towards mapping the spin-orbit texture and manipulating the spin orientation in topological and other spin-orbit coupled materials.Comment: submitted to Phys. Status Solidi RR

    A survey of IPV6 address usage in the public domain name system

    Get PDF
    The IPv6 protocol has been slowly increasing in use on the Internet. The main reason for the development of the protocol is that the address space provided by IPv4 is nearing exhaustion. The pool of addresses provided by IPv6 is 296 times larger than IPv4, and should be sufficient to provide an address for every device for the foreseeable future. Another potential advantage of this significantly large address space is the use of randomly assigned addresses as a security barrier as part of a defence in depth strategy. This research examined the addresses allocated by those implementing IPv6 to determine what method or pattern of allocation was being used by adopters of the protocol. This examination was done through the use of DNS queries of the AAAA IPv6 host record using public DNS servers. It was observed that 55.84% of IPv6 addresses were in the range of 0 to (232 − 1). For those addresses with unique interface identifier (IID) portions, a nearly equal number of sequential and random IIDs were observed. Hong Kong and Germany were found to have the greatest number of IPv6 addresses. These results suggest that adopters are allocating most addresses sequentially, meaning that no security advantage is being obtained. It is unclear as to whether this is through design or the following of accepted practice. Future research will continue to survey the IPv6 address space to determine whether the patterns observed here remain constant

    Magnetic anisotropy at the buried CoO/Fe interface

    Get PDF
    Interfaces between antiferromagnetic CoO and ferromagnetic Fe are typically characterized by the development of Fe oxides. Recently, it was shown that the use of a proper ultra-thin Co buffer layer prevents the formation of Fe oxides [Brambilla et al., Appl. Surf. Sci. 362, 374 (2016)]. In the present work, we investigate the magnetic properties of such an interface, and we find evidence for an in-plane uniaxial magnetic anisotropy, which is characterized by a multijump reversal behavior in the magnetization hysteresis loops. X-ray photoemission spectroscopy and element-sensitive hysteresis loops reveal that the occurrence of such an anisotropy is a phenomenon developing at the very interface

    Spin dynamics in semiconductors

    Full text link
    This article reviews the current status of spin dynamics in semiconductors which has achieved a lot of progress in the past years due to the fast growing field of semiconductor spintronics. The primary focus is the theoretical and experimental developments of spin relaxation and dephasing in both spin precession in time domain and spin diffusion and transport in spacial domain. A fully microscopic many-body investigation on spin dynamics based on the kinetic spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published in Physics Reports
    corecore