778 research outputs found
Industrial constructions of publics and public knowledge: a qualitative investigation of practice in the UK chemicals industry
This is a post print version of the article. The official published version can be obtained from the link below - © 2007 by SAGE PublicationsWhile the rhetoric of public engagement is increasingly commonplace within industry, there has been little research that examines how lay knowledge is conceptualized and whether it is really used within companies. Using the chemicals sector as an example, this paper explores how companies conceive of publics and "public knowledge," and how this relates to modes of engagement/communication with them. Drawing on qualitative empirical research in four companies, we demonstrate that the public for industry are primarily conceived as "consumers" and "neighbours," having concerns that should be allayed rather than as groups with knowledge meriting engagement. We conclude by highlighting the dissonance between current advocacy of engagement and the discourses and practices prevalent within industry, and highlight the need for more realistic strategies for industry/public engagement.Funding was received from the ESRC Science in Society Programme
The re-professionalization of the police in England and Wales
In this article contemporary police claims to professional status are analysed and related to a new structure of police regulation in England and Wales. It is argued that the notion of the police as a profession is not new and, unlike police and academic commentary, analysis of this subject, should draw on sociological understandings of professions. The wider policy context within which claims to professionalisation are made is also considered. It is argued that a new, loosely-coupled system of regulation has been developed in England and Wales. Policing’s professional body, the College of Policing, is central to this regulatory framework that has placed government at a distance from constabularies and police representative associations. Finally, some of the consequences of the hybrid system are considered and benefits of the framework of analysis proposed are discussed
Recommended from our members
Reconstruction and measurement of (100) MeV energy electromagnetic activity from π0 arrow γγ decays in the MicroBooNE LArTPC
We present results on the reconstruction of electromagnetic (EM) activity from photons produced in charged current νμ interactions with final state π0s. We employ a fully-automated reconstruction chain capable of identifying EM showers of (100) MeV energy, relying on a combination of traditional reconstruction techniques together with novel machine-learning approaches. These studies demonstrate good energy resolution, and good agreement between data and simulation, relying on the reconstructed invariant π0 mass and other photon distributions for validation. The reconstruction techniques developed are applied to a selection of νμ + Ar → μ + π0 + X candidate events to demonstrate the potential for calorimetric separation of photons from electrons and reconstruction of π0 kinematics
The cometary composition of a protoplanetary disk as revealed by complex cyanides
Observations of comets and asteroids show that the Solar Nebula that spawned
our planetary system was rich in water and organic molecules. Bombardment
brought these organics to the young Earth's surface, seeding its early
chemistry. Unlike asteroids, comets preserve a nearly pristine record of the
Solar Nebula composition. The presence of cyanides in comets, including 0.01%
of methyl cyanide (CH3CN) with respect to water, is of special interest because
of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like
compositions of simple and complex volatiles are found in protostars, and can
be readily explained by a combination of gas-phase chemistry to form e.g. HCN
and an active ice-phase chemistry on grain surfaces that advances
complexity[3]. Simple volatiles, including water and HCN, have been detected
previously in Solar Nebula analogues - protoplanetary disks around young stars
- indicating that they survive disk formation or are reformed in situ. It has
been hitherto unclear whether the same holds for more complex organic molecules
outside of the Solar Nebula, since recent observations show a dramatic change
in the chemistry at the boundary between nascent envelopes and young disks due
to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and
HC3N) in the protoplanetary disk around the young star MWC 480. We find
abundance ratios of these N-bearing organics in the gas-phase similar to
comets, which suggests an even higher relative abundance of complex cyanides in
the disk ice. This implies that complex organics accompany simpler volatiles in
protoplanetary disks, and that the rich organic chemistry of the Solar Nebula
was not unique.Comment: Definitive version of the manuscript is published in Nature, 520,
7546, 198, 2015. This is the author's versio
Fibre optic intravascular measurements of blood flow: A review
Fibre optic sensors are well suited to measuring fluid flow in many contexts, and recently there has been burgeoning interest in their application to direct, invasive measurement of blood flow within human vasculature. Depending on the sensing method used and assumptions made, these intravascular measurements of blood flow can provide information about local blood velocity, volumetric flow, and flow-derived parameters. Fibre optic sensors can be readily integrated into medical devices, which are positioned into arteries and veins to obtain measurements that are inaccessible or cumbersome using non-invasive imaging modalities. Measurements of flow within coronary arteries is a particularly promising application of fibre optic sensing; recent studies have demonstrated the clinical utility of certain flow-based parameters, such as the coronary flow reserve (CFR) and the index of microcirculatory resistance (IMR). In this review, research and development of fibre optic flow sensors relevant to intravascular flow measurements are reviewed, with a particular focus on biomedical clinical translation
Recommended from our members
Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons
We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration
Conceptualizing pathways linking women's empowerment and prematurity in developing countries.
BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed
Symbolic meanings and e-learning in the workplace: The case of an intranet-based training tool
This article contributes to the debate on work-based e-learning, by unpacking the notion of ‘the learning context’ in a case where the mediating tool for training also supports everyday work. Users’ engagement with the information and communication technology tool is shown to reflect dynamic interactions among the individual, peer group, organizational and institutional levels. Also influential are professionals’ values and identity work, alongside their interpretations of espoused and emerging symbolic meanings. Discussion draws on pedagogically informed studies of e-learning and the wider organizational learning literature. More centrally, this article highlights the instrumentality of symbolic interactionism for e-learning research and explores some of the framework’s conceptual resources as applied to organizational analysis and e-learning design. </jats:p
Optical interferometric temperature sensors for intravascular blood flow measurements
Direct and continuous measurements of blood flow are of significant interest in many medical specialties. In cardiology, intravascular physiological measurements can be of critical importance to determine whether coronary stenting should be performed. Intravascular pressure is a physiological parameter that is frequently measured in clinical practice. An increasing body of evidence suggests that direct measurements of blood flow, as additional physiological parameters, could improve decision making. In this study, we developed a novel fibre optic intravascular flow sensor, which enabled time-of-flight measurements by upstream thermal tagging of blood. This flow sensor comprised a temperature sensitive polymer dome at the distal end of a single mode optical fibre. The dome was continuously interrogated by low coherence interferometry to measure thermally-induced length changes with nanometre-scale resolution. Flow measurements were performed by delivering heat upstream from the sensor with a separate optical fibre, and monitoring the temperature downstream at the dome with a sample rate of 50 Hz. A fabricated flow sensor was characterized and tested within a benchtop phantom, which comprised vessels with lumen diameters that ranged from 2.5 to 5 mm. Water was used as a blood mimicking fluid. For each vessel diameter, a pump provided constant volumetric flow at rates in the range of 5 to 200 ml/min. This range was chosen to represent flow rates encountered in healthy human vessels. Laser light pulses with a wavelength of 1470 nm and durations of 0.4 s were used to perform upstream thermal tagging. These pulses resulted in downstream temperature profiles that varied with the volumetric flow rate
DNA repair, genome stability and cancer: a historical perspective
The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy
- …
