2,799 research outputs found
The Compton-Schwarzschild correspondence from extended de Broglie relations
The Compton wavelength gives the minimum radius within which the mass of a
particle may be localized due to quantum effects, while the Schwarzschild
radius gives the maximum radius within which the mass of a black hole may be
localized due to classial gravity. In a mass-radius diagram, the two lines
intersect near the Planck point , where quantum gravity effects
become significant. Since canonical (non-gravitational) quantum mechanics is
based on the concept of wave-particle duality, encapsulated in the de Broglie
relations, these relations should break down near . It is unclear
what physical interpretation can be given to quantum particles with energy , since they correspond to wavelengths or time
periods in the standard theory. We therefore propose a correction
to the standard de Broglie relations, which gives rise to a modified Schr{\"
o}dinger equation and a modified expression for the Compton wavelength, which
may be extended into the region . For the proposed modification,
we recover the expression for the Schwarzschild radius for and
the usual Compton formula for . The sign of the inequality
obtained from the uncertainty principle reverses at , so that
the Compton wavelength and event horizon size may be interpreted as minimum and
maximum radii, respectively. We interpret the additional terms in the modified
de Broglie relations as representing the self-gravitation of the wave packet.Comment: 40 pages, 7 figures, 2 appendices. Published version, with additional
minor typos corrected (v3
Accurate and efficient calculation of response times for groundwater flow
We study measures of the amount of time required for transient flow in
heterogeneous porous media to effectively reach steady state, also known as the
response time. Here, we develop a new approach that extends the concept of mean
action time. Previous applications of the theory of mean action time to
estimate the response time use the first two central moments of the probability
density function associated with the transition from the initial condition, at
, to the steady state condition that arises in the long time limit, as . This previous approach leads to a computationally convenient
estimation of the response time, but the accuracy can be poor. Here, we outline
a powerful extension using the first raw moments, showing how to produce an
extremely accurate estimate by making use of asymptotic properties of the
cumulative distribution function. Results are validated using an existing
laboratory-scale data set describing flow in a homogeneous porous medium. In
addition, we demonstrate how the results also apply to flow in heterogeneous
porous media. Overall, the new method is: (i) extremely accurate; and (ii)
computationally inexpensive. In fact, the computational cost of the new method
is orders of magnitude less than the computational effort required to study the
response time by solving the transient flow equation. Furthermore, the approach
provides a rigorous mathematical connection with the heuristic argument that
the response time for flow in a homogeneous porous medium is proportional to
, where is a relevant length scale, and is the aquifer
diffusivity. Here, we extend such heuristic arguments by providing a clear
mathematical definition of the proportionality constant.Comment: 22 pages, 3 figures, accepted version of paper published in Journal
of Hydrolog
New homogenization approaches for stochastic transport through heterogeneous media
The diffusion of molecules in complex intracellular environments can be
strongly influenced by spatial heterogeneity and stochasticity. A key challenge
when modelling such processes using stochastic random walk frameworks is that
negative jump coefficients can arise when transport operators are discretized
on heterogeneous domains. Often this is dealt with through homogenization
approximations by replacing the heterogeneous medium with an
homogeneous medium. In this work, we present a new class
of homogenization approximations by considering a stochastic diffusive
transport model on a one-dimensional domain containing an arbitrary number of
layers with different jump rates. We derive closed form solutions for the th
moment of particle lifetime, carefully explaining how to deal with the internal
interfaces between layers. These general tools allow us to derive simple
formulae for the effective transport coefficients, leading to significant
generalisations of previous homogenization approaches. Here, we find that
different jump rates in the layers gives rise to a net bias, leading to a
non-zero advection, for the entire homogenized system. Example calculations
show that our generalized approach can lead to very different outcomes than
traditional approaches, thereby having the potential to significantly affect
simulation studies that use homogenization approximations.Comment: 9 pages, 2 figures, accepted version of paper published in The
Journal of Chemical Physic
COLONIZATION OF NORTHERN LOUISIANA BY THE MEDITERRANEAN GECKO, HEMIDACTYLUS TURCICUS
The Mediterranean Gecko, Hemidactylus turcicus, is known to have colonized nearly every state in the southern United States. In Louisiana, the Mediterranean Gecko has been documented in many of the southern parishes, but records for the northern portion of the state are limited. We sampled northern Louisiana parishes to document the presence of the Mediterranean Gecko. We sampled a total of 21 parishes in northern Louisiana and found geckos in 17 of those parishes, 16 of which represent new distribution records for the species. This indicates a significant range expansion of this introduced species throughout northern Louisiana. Geckos were found across a temperature range of 14.0–28.0°C and had a strong association with buildings. The species’ affinity for anthropogenic association and the continual nature of anthropogenic expansion facilitate the high vagility of this species. The result is a successful colonization throughout much of Louisiana and likely continued range expansion throughout the southern United States
Working wetlands: classifying wetland potential for agriculture
Wetlands / Ecology / Natural resources / Social aspects / Case studies / Zanzibar / Tanzania / Zimbabwe / Swaziland
High-Resolution Near Infrared Spectroscopy of HD 100546: II. Analysis of variable rovibrational CO emission lines
We present observations of rovibrational CO in HD 100546 from four epochs
spanning January 2003 through December 2010. We show that the equivalent widths
of the CO lines vary during this time period with the v=1-0 CO lines
brightening more than the UV fluoresced lines from the higher vibrational
states. While the spectroastrometric signal of the hot band lines remains
constant during this period, the spectroastrometric signal of the v=1--0 lines
varies substantially. At all epochs, the spectroastrometric signals of the UV
fluoresced lines are consistent with the signal one would expect from gas in an
axisymmetric disk. In 2003, the spectroastrometric signal of the v=1-0 P26 line
was symmetric and consistent with emission from an axisymmetric disk. However,
in 2006, there was no spatial offset of the signal detected on the red side of
the profile, and in 2010, the spectroastrometric offset was yet more strongly
reduced toward zero velocity. A model is presented that can explain the
evolution of the equivalent width of the v=1-0 P26 line and its
spectroastrometric signal by adding to the system a compact source of CO
emission that orbits the star near the inner edge of the disk. We hypothesize
that such emission may arise from a circumplanetary disk orbiting a gas giant
planet near the inner edge of the circumstellar disk. We discuss how this idea
can be tested observationally and be distinguished from an alternative
interpretation of random fluctuations in the disk emission.Comment: 18 pages, 10 figure
The effect of combined glutamate receptor blockade in the NTS on the hypoxic ventilatory response in awake rats differs from the effect of individual glutamate receptor blockade.
Ventilatory acclimatization to hypoxia (VAH) increases the hypoxic ventilatory response (HVR) and causes persistent hyperventilation when normoxia is restored, which is consistent with the occurrence of synaptic plasticity in acclimatized animals. Recently, we demonstrated that antagonism of individual glutamate receptor types (GluRs) within the nucleus tractus solitarii (NTS) modifies this plasticity and VAH (J. Physiol. 592(8):1839-1856); however, the effects of combined GluR antagonism remain unknown in awake rats. To evaluate this, we exposed rats to room air or chronic sustained hypobaric hypoxia (CSH, PiO2 = 70 Torr) for 7-9 days. On the experimental day, we microinjected artificial cerebrospinal fluid (ACSF: sham) and then a "cocktail" of the GluR antagonists MK-801 and DNQX into the NTS. The location of injection sites in the NTS was confirmed by glutamate injections on a day before the experiment and with histology following the experiment. Ventilation was measured in awake, unrestrained rats breathing normoxia or acute hypoxia (10% O2) in 15-min intervals using barometric pressure plethysmography. In control (CON) rats, acute hypoxia increased ventilation; NTS microinjections of GluR antagonists, but not ACSF, significantly decreased ventilation and breathing frequency in acute hypoxia but not normoxia (P < 0.05). CSH increased ventilation in hypoxia and acute normoxia. In CSH-conditioned rats, GluR antagonists in the NTS significantly decreased ventilation in normoxia and breathing frequency in hypoxia. A persistent HVR after combined GluR blockade in the NTS contrasts with the effect of individual GluR blockade and also with results in anesthetized rats. Our findings support the hypotheses that GluRs in the NTS contribute to, but cannot completely explain, VAH in awake rats
- …
