64 research outputs found

    CFD Investigations on Heavy Liquid Metal Alternative Target Design for the SPS Beam Dump Facility

    Get PDF
    This study introduces numerical advancements in an alternative design for the Super Proton Synchrotron (SPS) Beam Dump Facility (BDF) at the European Laboratory for Particle Physics (CERN). The design envisions a high-power operation target made of flowing liquid lead. The proposed BDF is a versatile facility for both beam-dump-like and fixed-target experiments. The target behavior is studied, assuming a proton beam with a momentum of 400 GeV/c, a pulse frequency of 1/7.2 Hz, and an average beam power of 355 kW. Using various Computational Fluid Dynamics (CFD) codes, we evaluate the behavior of liquid lead and predict the thermal stress on the target vessel induced by the pulsed heat source generated by the charged particle beam. The comparison increases the reliability of the results, investigating the dependencies on the CFD modeling approach. The beam is a volumetric heat source with data from the beam-lead interaction simulations provided by the European Laboratory for Particle Physics and obtained with a Monte Carlo code. Velocity field and stress profiles can enhance the design of the lead loop and verify its viability and safety when operated with a liquid metal target

    Divertor Tokamak Test facility project: status of design and implementation

    Get PDF

    Interim report for the International Muon Collider Collaboration (IMCC)

    Full text link
    The International Muon Collider Collaboration (IMCC) [1] was established in 2020 following the recommendations of the European Strategy for Particle Physics (ESPP) and the implementation of the European Strategy for Particle Physics-Accelerator R&D Roadmap by the Laboratory Directors Group [2], hereinafter referred to as the the European LDG roadmap. The Muon Collider Study (MuC) covers the accelerator complex, detectors and physics for a future muon collider. In 2023, European Commission support was obtained for a design study of a muon collider (MuCol) [3]. This project started on 1st March 2023, with work-packages aligned with the overall muon collider studies. In preparation of and during the 2021-22 U.S. Snowmass process, the muon collider project parameters, technical studies and physics performance studies were performed and presented in great detail. Recently, the P5 panel [4] in the U.S. recommended a muon collider R&D, proposed to join the IMCC and envisages that the U.S. should prepare to host a muon collider, calling this their "muon shot". In the past, the U.S. Muon Accelerator Programme (MAP) [5] has been instrumental in studies of concepts and technologies for a muon collider.Comment: This document summarises the International Muon Collider Collaboration (IMCC) progress and status of the Muon Collider R&D programm

    Sulla compressibilità delle soluzioni elettrolitiche

    No full text

    Sulla viscosità di volume — (I)

    No full text
    corecore