5,298 research outputs found
Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime
Convection in stars excites resonant acoustic waves which depend on the sound
speed inside the star, which in turn depends on properties of the stellar
interior. Therefore, asteroseismology is an unrivaled method to probe the
internal structure of a star. We made a seismic study of the metal-poor
subgiant star nu Indi with the goal of constraining its interior structure. Our
study is based on a time series of 1201 radial velocity measurements spread
over 14 nights obtained from two sites, Siding Spring Observatory in Australia
and ESO La Silla Observatory in Chile. The power spectrum of the high precision
velocity time series clearly presents several identifiable peaks between 200
and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09
uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been
identified with amplitudes in the range 53 to 173 cm/s. The mode damping time
is estimated to be about 16 days (1-sigma range between 9 and 50 days),
substantially longer than in other stars like the Sun, the alpha Cen system or
the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
Reformulation of the Stochastic Potential Switching Algorithm and a Generalized Fourtuin-Kasteleyn Representation
A new formulation of the stochastic potential switching algorithm is
presented. This reformulation naturally leads us to a generalized
Fourtuin-Kasteleyn representation of the partition function Z. A formula for
internal energy E and that of heat capacity C are derived from derivatives of
the partition function. We also derive a formula for the exchange probability
in the replica exchange Monte Carlo method. By combining the formulae with the
Stochastic Cutoff method, we can greatly reduce the computational time to
perform internal energy and heat capacity measurements and the replica exchange
Monte Carlo method in long-range interacting systems. Numerical simulations in
three dimensional magnetic dipolar systems show the validity and efficiency of
the method.Comment: 11 pages, 6 figures, to appear in PR
Tunable differential phase shifters using MEMS positive/negative phase velocity transmission lines
Incompressible viscous flow near the leading edge of a flat plate admitting slip
The shear stress at the leading edge, calculated on basis of the Navier-Stokes equations and the no-slip boundary condition, approaches infinity. However, taking into account the mean free path of the molecules, which implies admitting a certain slip, the shear stress becomes inversely proportional to the square root of the Knudsen number κ if κ→0. κ is defined as the ratio between the mean free path and the viscous length. The new boundary condition modifies the shear stress only within the Knudsen region of which the size is of the order of 3 to 4 times the mean free path.
Interface growth in two dimensions: A Loewner-equation approach
The problem of Laplacian growth in two dimensions is considered within the
Loewner-equation framework. Initially the problem of fingered growth recently
discussed by Gubiec and Szymczak [T. Gubiec and P. Szymczak, Phys. Rev. E 77,
041602 (2008)] is revisited and a new exact solution for a three-finger
configuration is reported. Then a general class of growth models for an
interface growing in the upper-half plane is introduced and the corresponding
Loewner equation for the problem is derived. Several examples are given
including interfaces with one or more tips as well as multiple growing
interfaces. A generalization of our interface growth model in terms of
``Loewner domains,'' where the growth rule is specified by a time evolving
measure, is briefly discussed.Comment: To appear in Physical Review
Effects of rotational mixing on the asteroseismic properties of solar-type stars
The influence of rotational mixing on the evolution and asteroseismic
properties of solar-type stars is studied. Rotational mixing changes the global
properties of a solar-type star with a significant increase of the effective
temperature resulting in a shift of the evolutionary track to the blue part of
the HR diagram. These differences are related to changes of the chemical
composition, because rotational mixing counteracts the effects of atomic
diffusion leading to larger helium surface abundances for rotating models than
for non-rotating ones. Higher values of the large frequency separation are then
found for rotating models than for non-rotating ones at the same evolutionary
stage, because the increase of the effective temperature leads to a smaller
radius and hence to an increase of the stellar mean density. Rotational mixing
also has a considerable impact on the structure and chemical composition of the
central stellar layers by bringing fresh hydrogen fuel to the core, thereby
enhancing the main-sequence lifetime. The increase of the central hydrogen
abundance together with the change of the chemical profiles in the central
layers result in a significant increase of the values of the small frequency
separations and of the ratio of the small to large separations for models
including shellular rotation. This increase is clearly seen for models with the
same age sharing the same initial parameters except for the inclusion of
rotation as well as for models with the same global stellar parameters and in
particular the same location in the HR diagram. By computing rotating models of
solar-type stars including the effects of a dynamo that possibly occurs in the
radiative zone, we find that the efficiency of rotational mixing is strongly
reduced when the effects of magnetic fields are taken into account, in contrast
to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&
The analytic structure of 2D Euler flow at short times
Using a very high precision spectral calculation applied to the
incompressible and inviscid flow with initial condition , we find that the width of its analyticity
strip follows a law at short times over eight decades. The
asymptotic equation governing the structure of spatial complex-space
singularities at short times (Frisch, Matsumoto and Bec 2003, J.Stat.Phys. 113,
761--781) is solved by a high-precision expansion method. Strong numerical
evidence is obtained that singularities have infinite vorticity and lie on a
complex manifold which is constructed explicitly as an envelope of analyticity
disks.Comment: 19 pages, 14 figures, published versio
Evidence for a sharp structure variation inside a red-giant star
The availability of precisely determined frequencies of radial and non-radial
oscillation modes in red giants is finally paving the way for detailed studies
of the internal structure of these stars. We look for the seismic signature of
regions of sharp structure variation in the internal structure of the CoRoT
target HR7349. We analyse the frequency dependence of the large frequency
separation and second frequency differences, as well as the behaviour of the
large frequency separation obtained with the envelope auto-correlation
function. We find evidence for a periodic component in the oscillation
frequencies, i.e. the seismic signature of a sharp structure variation in
HR7349. In a comparison with stellar models we interpret this feature as caused
by a local depression of the sound speed that occurs in the helium
second-ionization region. Using solely seismic constraints this allows us to
estimate the mass (M=1.2^{+0.6}_{-0.4} Msun) and radius (R=12.2^{+2.1}_{-1.8}
Rsun) of HR7349, which agrees with the location of the star in an HR diagram.Comment: 4 pages, 5 figures, accepted in A&A Letter
- …
