5,298 research outputs found

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    Reformulation of the Stochastic Potential Switching Algorithm and a Generalized Fourtuin-Kasteleyn Representation

    Full text link
    A new formulation of the stochastic potential switching algorithm is presented. This reformulation naturally leads us to a generalized Fourtuin-Kasteleyn representation of the partition function Z. A formula for internal energy E and that of heat capacity C are derived from derivatives of the partition function. We also derive a formula for the exchange probability in the replica exchange Monte Carlo method. By combining the formulae with the Stochastic Cutoff method, we can greatly reduce the computational time to perform internal energy and heat capacity measurements and the replica exchange Monte Carlo method in long-range interacting systems. Numerical simulations in three dimensional magnetic dipolar systems show the validity and efficiency of the method.Comment: 11 pages, 6 figures, to appear in PR

    Incompressible viscous flow near the leading edge of a flat plate admitting slip

    Get PDF
    The shear stress at the leading edge, calculated on basis of the Navier-Stokes equations and the no-slip boundary condition, approaches infinity. However, taking into account the mean free path of the molecules, which implies admitting a certain slip, the shear stress becomes inversely proportional to the square root of the Knudsen number κ if κ→0. κ is defined as the ratio between the mean free path and the viscous length. The new boundary condition modifies the shear stress only within the Knudsen region of which the size is of the order of 3 to 4 times the mean free path.

    Interface growth in two dimensions: A Loewner-equation approach

    Full text link
    The problem of Laplacian growth in two dimensions is considered within the Loewner-equation framework. Initially the problem of fingered growth recently discussed by Gubiec and Szymczak [T. Gubiec and P. Szymczak, Phys. Rev. E 77, 041602 (2008)] is revisited and a new exact solution for a three-finger configuration is reported. Then a general class of growth models for an interface growing in the upper-half plane is introduced and the corresponding Loewner equation for the problem is derived. Several examples are given including interfaces with one or more tips as well as multiple growing interfaces. A generalization of our interface growth model in terms of ``Loewner domains,'' where the growth rule is specified by a time evolving measure, is briefly discussed.Comment: To appear in Physical Review

    Effects of rotational mixing on the asteroseismic properties of solar-type stars

    Full text link
    The influence of rotational mixing on the evolution and asteroseismic properties of solar-type stars is studied. Rotational mixing changes the global properties of a solar-type star with a significant increase of the effective temperature resulting in a shift of the evolutionary track to the blue part of the HR diagram. These differences are related to changes of the chemical composition, because rotational mixing counteracts the effects of atomic diffusion leading to larger helium surface abundances for rotating models than for non-rotating ones. Higher values of the large frequency separation are then found for rotating models than for non-rotating ones at the same evolutionary stage, because the increase of the effective temperature leads to a smaller radius and hence to an increase of the stellar mean density. Rotational mixing also has a considerable impact on the structure and chemical composition of the central stellar layers by bringing fresh hydrogen fuel to the core, thereby enhancing the main-sequence lifetime. The increase of the central hydrogen abundance together with the change of the chemical profiles in the central layers result in a significant increase of the values of the small frequency separations and of the ratio of the small to large separations for models including shellular rotation. This increase is clearly seen for models with the same age sharing the same initial parameters except for the inclusion of rotation as well as for models with the same global stellar parameters and in particular the same location in the HR diagram. By computing rotating models of solar-type stars including the effects of a dynamo that possibly occurs in the radiative zone, we find that the efficiency of rotational mixing is strongly reduced when the effects of magnetic fields are taken into account, in contrast to what happens in massive stars.Comment: 11 pages, 15 figures, accepted for publication in A&

    The analytic structure of 2D Euler flow at short times

    Full text link
    Using a very high precision spectral calculation applied to the incompressible and inviscid flow with initial condition ψ0(x1,x2)=cosx1+cos2x2\psi_0(x_1, x_2) = \cos x_1+\cos 2x_2, we find that the width δ(t)\delta(t) of its analyticity strip follows a ln(1/t)\ln(1/t) law at short times over eight decades. The asymptotic equation governing the structure of spatial complex-space singularities at short times (Frisch, Matsumoto and Bec 2003, J.Stat.Phys. 113, 761--781) is solved by a high-precision expansion method. Strong numerical evidence is obtained that singularities have infinite vorticity and lie on a complex manifold which is constructed explicitly as an envelope of analyticity disks.Comment: 19 pages, 14 figures, published versio

    Evidence for a sharp structure variation inside a red-giant star

    Full text link
    The availability of precisely determined frequencies of radial and non-radial oscillation modes in red giants is finally paving the way for detailed studies of the internal structure of these stars. We look for the seismic signature of regions of sharp structure variation in the internal structure of the CoRoT target HR7349. We analyse the frequency dependence of the large frequency separation and second frequency differences, as well as the behaviour of the large frequency separation obtained with the envelope auto-correlation function. We find evidence for a periodic component in the oscillation frequencies, i.e. the seismic signature of a sharp structure variation in HR7349. In a comparison with stellar models we interpret this feature as caused by a local depression of the sound speed that occurs in the helium second-ionization region. Using solely seismic constraints this allows us to estimate the mass (M=1.2^{+0.6}_{-0.4} Msun) and radius (R=12.2^{+2.1}_{-1.8} Rsun) of HR7349, which agrees with the location of the star in an HR diagram.Comment: 4 pages, 5 figures, accepted in A&A Letter
    corecore