246 research outputs found

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Get PDF
    Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL

    Multi analyte profiling and variability of inflammatory markers in blood and induced sputum in patients with stable COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed serial concentrations of multiple inflammatory mediators from serum and induced sputum obtained from patients with stable COPD and controls. The objective was to determine which proteins could be used as reliable biomarkers to assess COPD disease state and severity.</p> <p>Methods</p> <p>Forty-two subjects; 21 with stable COPD and 21 controls, were studied every 2 weeks over a 6-week period. Serum and induced sputum were obtained at each of 3 visits and concentrations of 19 serum and 22 sputum proteins were serially assessed using multiplex immunoassays. We used linear mixed effects models to test the distribution of proteins for an association with COPD and disease severity. Measures of within- and between-subject coefficients of variation were calculated for each of the proteins to assess reliability of measurement.</p> <p>Results</p> <p>There was significant variability in concentrations of all inflammatory proteins over time, and variability was greater for sputum proteins (median intra-subject coefficient of variation 0.58) compared to proteins measured in serum (median intra-subject coefficient of variation 0.32, P = 0.03). Of 19 serum proteins and 22 sputum proteins tested, only serum CRP, myeloperoxidase and VEGF and sputum IL-6, IL-8, TIMP-1, and VEGF showed acceptable intra and inter-patient reliability and were significantly associated with COPD, the severity of lung function impairment, and dyspnea.</p> <p>Conclusions</p> <p>Levels of many serum and sputum biomarkers cannot be reliably ascertained based on single measurements. Multiple measurements over time can give a more reliable and precise estimate of the inflammatory burden in clinically stable COPD patients.</p

    When does the co-evolution of technology and science overturn into technoscience?

    Get PDF
    In this paper, the relations between science and technology, intervention and representation, the natural and the artificial are analysed on the background of the formation of modern science in the sixteenth century. Due to the fact that technique has been essential for modern science from its early beginning, modern science is characterised by a hybridisation of knowledge and intervention. The manipulation of nature in order to measure its properties has steadily increased until artificial things have been produced, such as laser beams, chemical compounds, elementary particles. Furthermore, the structural bracing of natural science, technological development, and industrial exploitation of nature go also back to the foundation of modern science. In order to strengthen the debate on technoscience against this background, the specific characteristics of technoscientific objects have to be clarified as have the specific characteristics of the social organisation of technoscience and its performance

    Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 <it>in vitro </it>and <it>in vivo </it>in severe combined immunodeficiency (SCID) mice.</p> <p>Results</p> <p>We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells <it>in vitro </it>via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts <it>in vivo </it>in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells.</p> <p>Conclusions</p> <p>We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.</p

    Membrane estrogen receptor-α levels predict estrogen-induced ERK1/2 activation in MCF-7 cells

    Get PDF
    INTRODUCTION: We examined the participation of a membrane form of estrogen receptor (mER)-α in the activation of mitogen-activated protein kinases (extracellular signal-regulated kinase [ERK]1 and ERK2) related to cell growth responses in MCF-7 cells. METHODS: We immunopanned and subsequently separated MCF-7 cells (using fluorescence-activated cell sorting) into mER-α-enriched (mER(high)) and mER-α-depleted (mER(low)) populations. We then measured the expression levels of mER-α on the surface of these separated cell populations by immunocytochemical analysis and by a quantitative 96-well plate immunoassay that distinguished between mER-α and intracellular ER-α. Western analysis was used to determine colocalized estrogen receptor (ER)-α and caveolins in membrane subfractions. The levels of activated ERK1 and ERK2 were determined using a fixed cell-based enzyme-linked immunosorbent assay developed in our laboratory. RESULTS: Immunocytochemical studies revealed punctate ER-α antibody staining of the surface of nonpermeabilized mER(high )cells, whereas the majority of mER(low )cells exhibited little or no staining. Western analysis demonstrated that mER(high )cells expressed caveolin-1 and caveolin-2, and that ER-α was contained in the same gradient-separated membrane fractions. The quantitative immunoassay for ER-α detected a significant difference in mER-α levels between mER(high )and mER(low )cells when cells were grown at a sufficiently low cell density, but equivalent levels of total ER-α (membrane plus intracellular receptors). These two separated cell subpopulations also exhibited different kinetics of ERK1/2 activation with 1 pmol/l 17β-estradiol (E(2)), as well as different patterns of E(2 )dose-dependent responsiveness. The maximal kinase activation was achieved after 10 min versus 6 min in mER(high )versus mER(low )cells, respectively. After a decline in the level of phosphorylated ERKs, a reactivation was seen at 60 min in mER(high )cells but not in mER(low )cells. Both 1A and 2B protein phosphatases participated in dephosphorylation of ERKs, as demonstrated by efficient reversal of ERK1/2 inactivation with okadaic acid and cyclosporin A. CONCLUSION: Our results suggest that the levels of mER-α play a role in the temporal coordination of phosphorylation/dephosphorylation events for the ERKs in breast cancer cells, and that these signaling differences can be correlated to previously demonstrated differences in E(2)-induced cell proliferation outcomes in these cell types

    The Mayer-Rokitansky-Küster-Hauser syndrome (congenital absence of uterus and vagina) – phenotypic manifestations and genetic approaches

    Get PDF
    The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome affects at least 1 out of 4500 women and has for a long time been considered as a sporadic anomaly. Congenital absence of upper vagina and uterus is the prime feature of the disease which, in addition, is often found associated with unilateral renal agenesis or adysplasia as well as skeletal malformations (MURCS association). The phenotypic manifestations of MRKH overlap various other syndromes or associations and thus require accurate delineation. Since MRKH manifests itself in males, the term GRES syndrome (Genital, Renal, Ear, Skeletal) might be more appropriate when applied to both sexes. The MRKH syndrome, when described in familial aggregates, seems to be transmitted as an autosomal dominant trait with an incomplete degree of penetrance and variable expressivity. This suggests the involvement of either mutations in a major developmental gene or a limited chromosomal deletion. Until recently progress in understanding the genetics of MRKH syndrome has been slow, however, now HOX genes have been shown to play key roles in body patterning and organogenesis, and in particular during genital tract development. Expression and/or function defects of one or several HOX genes may account for this syndrome

    Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders

    Get PDF
    Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research
    corecore