238 research outputs found

    Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells

    Get PDF
    Amoeboid movement is one of the most widespread forms of cell motility that plays a key role in numerous biological contexts. While many aspects of this process are well investigated, the large cell-to-cell variability in the motile characteristics of an otherwise uniform population remains an open question that was largely ignored by previous models. In this article, we present a mathematical model of amoeboid motility that combines noisy bistable kinetics with a dynamic phase field for the cell shape. To capture cell-to-cell variability, we introduce a single parameter for tuning the balance between polarity formation and intracellular noise. We compare numerical simulations of our model to experiments with the social amoeba Dictyostelium discoideum. Despite the simple structure of our model, we found close agreement with the experimental results for the center-of-mass motion as well as for the evolution of the cell shape and the overall intracellular patterns. We thus conjecture that the building blocks of our model capture essential features of amoeboid motility and may serve as a starting point for more detailed descriptions of cell motion in chemical gradients and confined environments.Peer ReviewedPostprint (published version

    Adaptive microfluidic gradient generator for quantitative chemotaxis experiments

    Get PDF
    Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell

    Stochastic Reaction-Diffusion Systems in Biophysics: Towards a Toolbox for Quantitative Model Evaluation

    Full text link
    We develop a statistical toolbox for a quantitative model evaluation of stochastic reaction-diffusion systems modeling space-time evolution of biophysical quantities on the intracellular level. Starting from space-time data XN(t,x)X_N(t,x), as, e.g., provided in fluorescence microscopy recordings, we discuss basic modelling principles for conditional mean trend and fluctuations in the class of stochastic reaction-diffusion systems, and subsequently develop statistical inference methods for parameter estimation. With a view towards application to real data, we discuss estimation errors and confidence intervals, in particular in dependence of spatial resolution of measurements, and investigate the impact of misspecified reaction terms and noise coefficients. We also briefly touch implementation issues of the statistical estimators. As a proof of concept we apply our toolbox to the statistical inference on intracellular actin concentration in the social amoeba Dictyostelium discoideum

    Why A Large Scale Mode Can Be Essential For Understanding Intracellular Actin Waves

    Full text link
    During the last decade, intracellular actin waves have attracted much attention due to their essential role in various cellular functions, ranging from motility to cytokinesis. Experimental methods have advanced significantly and can capture the dynamics of actin waves over a large range of spatio-temporal scales. However, the corresponding coarse-grained theory mostly avoids the full complexity of this multi-scale phenomenon. In this perspective, we focus on a minimal continuum model of activator-inhibitor type and highlight the qualitative role of mass-conservation, which is typically overlooked. Specifically, our interest is to connect between the mathematical mechanisms of pattern formation in the presence of a large-scale mode, due to mass-conservation, and distinct behaviors of actin waves.Comment: 13 pages, 4 figure

    Diffusivity estimation for activator–inhibitor models: theory and application to intracellular dynamics of the actin cytoskeleton

    Get PDF
    A theory for diffusivity estimation for spatially extended activator–inhibitor dynamics modeling the evolution of intracellular signaling networks is developed in the math- ematical framework of stochastic reaction–diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equationsPostprint (published version

    Cargo size limits and forces of cell-driven microtransport

    Full text link
    The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here we study biohybrid microtransporters that are driven by amoeboid Dictyostelium discoideum cells and explore how the speed of transport and the resulting viscous drag force scales with increasing radius of the spherical cargo particle. Using a simplified geometrical model of the cell-cargo interaction, we extrapolate our findings towards larger cargo sizes that are not accessible with our experimental setup and predict a maximal cargo size beyond which active cell-driven transport will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments

    From single to collective motion of social amoebae: a computational study of interacting cells

    Get PDF
    The coupling of the internal mechanisms of cell polarization to cell shape deformations and subsequent cell crawling poses many interdisciplinary scientific challenges. Several mathematical approaches have been proposed to model the coupling of both processes, where one of the most successful methods relies on a phase field that encodes the morphology of the cell, together with the integration of partial differential equations that account for the polarization mechanism inside the cell domain as defined by the phase field. This approach has been previously employed to model the motion of single cells of the social amoeba Dictyostelium discoideum, a widely used model organism to study actin-driven motility and chemotaxis of eukaryotic cells. Besides single cell motility, Dictyostelium discoideum is also well-known for its collective behavior. Here, we extend the previously introduced model for single cell motility to describe the collective motion of large populations of interacting amoebae by including repulsive interactions between the cells. We performed numerical simulations of this model, first characterizing the motion of single cells in terms of their polarity and velocity vectors. We then systematically studied the collisions between two cells that provided the basic interaction scenarios also observed in larger ensembles of interacting amoebae. Finally, the relevance of the cell density was analyzed, revealing a systematic decrease of the motility with density, associated with the formation of transient cell clusters that emerge in this system even though our model does not include any attractive interactions between cells. This model is a prototypical active matter system for the investigation of the emergent collective dynamics of deformable, self-driven cells with a highly complex, nonlinear coupling of cell shape deformations, self-propulsion and repulsive cell-cell interactions. Understanding these self-organization processes of cells like their autonomous aggregation is of high relevance as collective amoeboid motility is part of wound healing, embryonic morphogenesis or pathological processes like the spreading of metastatic cancer cells.Postprint (published version

    Intermittent Run Motility of Bacteria in Gels Exhibits Power-Law Distributed Dwell Times

    Full text link
    While bacterial swimming has been well characterized in uniform liquid environments, only little is known about how bacteria propagate through complex environments, such as gel-like matrices or porous media that are typically encountered in tissue or soil. Here, we study swimming motility of the soil bacterium Pseudomonas putida (P. putida) in polysaccharide matrices formed by different concentrations of agar. P. putida cells display intermittent run-motility in the gel, where run times are exponentially distributed and intermittently occurring dwell times follow a waiting-time distribution with a power-law decay. An analysis of the turn angle distribution suggests that both, flagella mediated turning as well as mechanical trapping in the agar matrix play a role in the overall swimming pattern. Based on the experimentally observed motility pattern and measured waiting-time distributions, we propose a minimal active particle model which correctly describes the observed time dependence of the mean square displacement of the bacterial swimmers.Comment: 6 pages, 4 figure

    How cortical waves drive fission of motile cells

    Get PDF
    Cytokinesis—the division of a cell into two daughter cells—is a key step in cell growth and proliferation. It typically occurs in synchrony with the cell cycle to ensure that a complete copy of the genetic information is passed on to the next generation of daughter cells. In animal cells, cytokinesis commonly relies on an actomyosin contractile ring that drives equatorial furrowing and separation into the two daughter cells. However, also contractile ring-independent forms of cell division are known that depend on substrate-mediated traction forces. Here, we report evidence of an as yet unknown type of contractile ring-independent cytokinesis that we termed wave-mediated cytofission. It is driven by self-organized cortical actin waves that travel across the ventral membrane of oversized, multinucleated Dictyostelium discoideum cells. Upon collision with the cell border, waves may initiate the formation of protrusions that elongate and eventually pinch off to form separate daughter cells. They are composed of a stable elongated wave segment that is enclosed by a cell membrane and moves in a highly persistent fashion. We rationalize our observations based on a noisy excitable reaction–diffusion model in combination with a dynamic phase field to account for the cell shape and demonstrate that daughter cells emerging from wave-mediated cytofission exhibit a well-controlled size.Postprint (published version

    Rectification of Bacterial Diffusion in Microfluidic Labyrinths

    Get PDF
    In nature as well as in the context of infection and medical applications, bacteria often have to move in highly complex environments such as soil or tissues. Previous studies have shown that bacteria strongly interact with their surroundings and are often guided by confinements. Here, we investigate theoretically how the dispersal of swimming bacteria can be augmented by microfluidic environments and validate our theoretical predictions experimentally. We consider a system of bacteria performing the prototypical run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels between the square obstacles limit the possibility of bacteria to reorient during tumbling events to an area where channels cross. Thus, by varying the geometry of the lattice it might be possible to control the dispersal of cells. We present a theoretical model quantifying diffusive spreading of a run-and-tumble random walker in a square lattice. Numerical simulations validate our theoretical predictions for the dependence of the diffusion coefficient on the lattice geometry. We show that bacteria moving in square labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly, confinement significantly extends the duration of the phase with strongly non-Gaussian diffusion, when the geometry of channels is imprinted in the density profiles of spreading cells. Finally, in good agreement with our theoretical findings, we observe the predicted behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth created in a microfluidic device. Altogether, our comprehensive understanding of bacterial dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis of more complex geometries relevant for real world applications
    corecore