7 research outputs found

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle

    Get PDF
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle

    Recombinant Human L-Ficolin Directly Neutralizes Hepatitis C Virus Entry

    Get PDF
    L-ficolin is a soluble pattern recognition molecule expressed by the liver that contributes to innate immune defense against microorganisms. It is well described that binding of L-ficolin to specific pathogen-associated molecular patterns activates the lectin complement pathway, resulting in opsonization and lysis of pathogens. In this study, we demonstrated that in addition to this indirect effect, L-ficolin has a direct neutralizing effect against hepatitis C virus (HCV) entry. Specific, dose-dependent binding of recombinant L-ficolin to HCV glycoproteins E1 and E2 was observed. This interaction was inhibited by soluble L-ficolin ligands. Interaction of L-ficolin with E1 and E2 potently inhibited entry of retroviral pseudoparticles bearing these glycoproteins. L-ficolin also inhibited entry of cell-cultured HCV in a calcium-dependent manner. Neutralizing concentrations of L-ficolin were found to be circulating in the serum of HCV-infected individuals. This is the first description of direct neutralization of HCV entry by a ficolin and highlights a novel role for L-ficolin as a virus entry inhibitor

    Persistent Chikungunya Virus Replication in Human Cells is Associated with Presence of Stable Cytoplasmic Granules Containing Non-structural Protein 3

    Full text link
    AbstractChikungunya virus (CHIKV), a mosquito-borne human pathogen, causes a disabling disease characterized by severe joint pain that can persist for weeks, months or even years in patients. The non-structural protein 3 (nsP3) plays essential roles during acute infection, but little is known about the function of nsP3 during chronic disease. Here, we used sub-diffraction multi-color microscopy for a spatial and temporal analysis of CHIKV nsP3 within human cells that persistently replicate viral RNA. Round cytoplasmic granules of various sizes (i) contained nsP3 and G3BP Stress Granule Assembly factor; (ii) were next to double-stranded RNA foci, and nsP1-positive structures; and (iii) made contact with markers of the cytoskeleton and cellular structures, such as early endosomes and nucleopores. Analysis of protein turnover and mobility by live-cell microscopy revealed that granules could persist for hours to days, can accumulate newly synthesized protein, and move at differently through the cytoplasm. Granules also had a static internal architecture and were stable in cell lysates. Whereas cells with active replication and stable nsP3-granules did not respond to oxidative stress, refractory cells that had cleared the non-cytotoxic replicon could. In summary, nsP3 can form uniquely stable granular structures that persist long-term within the host cell. This continued presence of viral and cellular protein-complexes has implications for the study of the pathogenic consequences of lingering CHIKV infection and the development of strategies to mitigate the burden of chronic musculoskeletal disease brought about by a medically important arthropod-borne virus (arbovirus).ImportanceChikungunya virus (CHIKV) is a re-emerging alphavirus transmitted by mosquitos and causes widespread transient sickness but also chronic disease affecting muscles and joints. Although no approved vaccines or antivirals are available, a better understanding of the viral life cycle and the role of individual viral proteins can aid in identifying new therapeutic targets. Advances in microscopy and persistent CHIKV model systems now allow researchers to study viral proteins within controlled laboratory environments. Here we established human cells that stably replicate viral RNA and express a tagged version of non-structural protein 3. The ability to track this viral protein within the host cell and during persistent replication can benefit fundamental research efforts to better understand long-term consequences of the persistence of viral protein complexes and thereby provide the foundation for new therapeutic targets to control CHIKV infection and treat chronic disease symptoms.</jats:sec

    Methionine Sulfoxide Reductases A and B Are Deactivated by Hydrogen Peroxide (H2O2) in the Epidermis of Patients with Vitiligo

    Get PDF
    Patients with the depigmentation disorder vitiligo have low catalase expression/activities and constantly accumulate 10−3M hydrogen peroxide (H2O2) in their skin. Such high concentrations of H2O2 oxidize L-methionine residues in proteins and peptides to (R and S)-methionine sulfoxide diasteriomers. In vivo FT-Raman Spectroscopy revealed the presence of methionine sulfoxide in the depigmented skin of patients with active vitiligo. In normal healthy human skin, methionine sulfoxide reductases A and B specifically reduce methionine sulfoxides (S) and (R), respectively, back to L-methionine consequently repairing oxidatively damaged proteins and peptides. In this report, we show that the expression/activities of MSRA and MSRB are significantly decreased in the epidermis of patients with vitiligo compared to healthy controls. Also, we used recombinant human MSRA and MSRB1 to show that both enzymes are deactivated by 10−3M H2O2 by 85 and 40%, respectively. Structural modelling based on the crystal structure of human MSRA revealed that the active site of this enzyme is significantly altered after H2O2-mediated oxidation of L-methionine, L-tryptophan, and L-cysteine residues in its active site. Taken together, our results confirm that very important anti-oxidant enzymes are seriously affected in acute vitiligo

    Is the ADP ribose site of the Chikungunya virus NSP3 Macro domain a target for antiviral approaches?

    No full text
    Chikungunya virus (CHIKV) is a mosquito-transmitted virus of special concern as it causes Chikungunya fever, characterized by an acute febrile illness, rash, and arthralgia that can progress to chronic and debilitating arthritic symptoms. The effects of climate change on the geographic distribution of the mosquito vector has the potential to expose more of the globe to this virus. No antiviral agents or vaccines are currently available against CHIKV infection and the development of novel therapies that may lead to a future treatment is therefore necessary. In this context, the ADP-ribose binding site of the CHIKV nsP3 macro domain has been reported as a potential target for the development of antivirals. Mutations in the ADP-ribose binding site demonstrated decreased viral replication in cell culture and reduced virulence. In this study, 48,750 small molecules were screened in silico for their ability to bind to the ADP-ribose binding site of the CHIKV nsP3 macro domain. From this in silico analysis, 12 molecules were selected for in vitro analysis using a CHIKV subgenomic replicon in Huh-7 cells. Cell viability and CHIKV replication were evaluated and molecules C5 and C13 demonstrated 53 and 66% inhibition of CHIKV replication, respectively. By using a CHIKV-Dual luciferase replicon contain two reporter genes, we also demonstrated that the treatment with either compounds are probably interfering in the early replication rather than after RNA replication has occurred.Royal Society - Newton Advanced FellowshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Wellcome TrustSao Paulo State Univ, IBILCE, Sao Jose Do Rio Preto, SP, BrazilUniv Fed Uberlandia, Inst Biomed Sci, Lab Virol, ICBIM, Uberlandia, MG, BrazilUniv Leeds, Fac Engn & Phys Sci, Sch Chem, Leeds LS2 9JT, W Yorkshire, EnglandUniv Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, EnglandUniv Leeds, Fac Biol Sci, Sch Mol & Cellular Biol, Leeds LS2 9JT, W Yorkshire, EnglandUniv Tartu, Inst Technol, Nooruse 1, EE-50411 Tartu, EstoniaSao Paulo State Univ, IBILCE, Sao Jose Do Rio Preto, SP, BrazilRoyal Society - Newton Advanced Fellowship: NA 150195CNPq: 445021/2014-4FAPEMIG: APQ-00587-14FAPEMIG: SICONV 793988/2013CAPES: 001Wellcome Trust: 09667

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle.

    No full text
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle
    corecore