1,028 research outputs found
Caffeine Inhibits EGF-Stimulated Trophoblast Cell Motility through the Inhibition of mTORC2 and Akt.
Impaired trophoblast invasion is associated with pregnancy disorders such as early pregnancy loss and preeclampsia. There is evidence to suggest that the consumption of caffeine during pregnancy may increase the risk of pregnancy loss; however, little is known about the direct effect of caffeine on normal trophoblast biology. Our objectives were to examine the effect of caffeine on trophoblast migration and motility after stimulation with epidermal growth factor (EGF) and to investigate the intracellular signaling pathways involved in this process. Primary first-trimester extravillous trophoblasts (EVT) and the EVT-derived cell line SGHPL-4 were used to study the effect of caffeine on EGF-stimulated cellular motility using time-lapse microscopy. SGHPL-4 cells were further used to study the effect of caffeine and cAMP on EGF-stimulated invasion of fibrin gels. The influence of caffeine and cAMP on EGF-stimulated intracellular signaling pathways leading to the activation of Akt were investigated by Western blot analysis. Caffeine inhibits both EGF-stimulated primary EVT and SGHPL-4 cell motility. EGF stimulation activates phosphatidylinositol 3-kinase, and Akt and caffeine inhibit this activation. Although cAMP inhibits both motility and invasion, it does not inhibit the activation of Akt, indicating that the effects of caffeine seen in this study are independent of cAMP. Further investigation indicated a role for mammalian target of rapamycin complex 2 (mTORC2) as a target for the inhibitory effect of caffeine. In conclusion, we demonstrate that caffeine inhibits EGF-stimulated trophoblast invasion and motility in vitro and so could adversely influence trophoblast biology in vivo
NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units
We present and discuss the characteristics and performances, both in term of
computational speed and precision, of a numerical code which numerically
integrates the equation of motions of N 'particles' interacting via Newtonian
gravitation and move in an external galactic smooth field. The force evaluation
on every particle is done by mean of direct summation of the contribution of
all the other system's particle, avoiding truncation error. The time
integration is done with second-order and sixth-order symplectic schemes. The
code, NBSymple, has been parallelized twice, by mean of the Computer Unified
Device Architecture to make the all-pair force evaluation as fast as possible
on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the
O(N) computations are distributed on various CPUs by mean of OpenMP Application
Program. The code works both in single precision floating point arithmetics or
in double precision. The use of single precision allows the use at best of the
GPU performances but, of course, limits the precision of simulation in some
critical situations. We find a good compromise in using a software
reconstruction of double precision for those variables that are most critical
for the overall precision of the code. The code is available on the web site
astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New
Astronomy
Some inequalities on generalized entropies
We give several inequalities on generalized entropies involving Tsallis
entropies, using some inequalities obtained by improvements of Young's
inequality. We also give a generalized Han's inequality.Comment: 15 page
Insect navigation: do ants live in the now?
Visual navigation is a critical behaviour formanyanimals, and it has been
particularly well studied in ants. Decades of ant navigation research have
uncovered many ways in which efficient navigation can be implemented
in small brains. For example, ants show us how visual information can
drive navigation via procedural rather than map-like instructions. Two
recent behavioural observations highlight interesting adaptive ways in
which ants implement visual guidance. Firstly, it has been shownthat the
systematic nest searches of ants can be biased by recent experience of
familiar scenes. Secondly, ants have been observed to show temporary
periods of confusion when asked to repeat a route segment, even if that
route segment is very familiar. Taken together, these results indicate that
the navigational decisions of ants take into account their recent
experiences as well as the currently perceived environment
Infant mortality in the hierarchical merging scenario: dependence on gas expulsion time-scales
We examine the effects of gas expulsion on initially substructured and out-of-equilibrium star clusters. We perform N-body simulations of the evolution of star clusters in a static background potential before adjusting that potential to model gas expulsion. We investigate the impact of varying the rate at which the gas is removed, and the instant at which gas removal begins.
Reducing the rate at which the gas is expelled results in an increase in cluster survival. Quantitatively, this dependence is approximately in agreement with previous studies, despite their use of smooth and virialized initial stellar distributions.
However, the instant at which gas expulsion occurs is found to have a strong effect on cluster response to gas removal. We find if gas expulsion occurs prior to one crossing time, cluster response is poorly described by any global parameters. Furthermore, in real clusters the instant of gas expulsion is poorly constrained. Therefore, our results emphasize the highly stochastic and variable response of star clusters to gas expulsion
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Formation rates of star clusters in the hierarchical merging scenario
Stars form with a complex and highly structured distribution. For a smooth star cluster to form from these initial conditions, the star cluster must erase this substructure. We study how substructure is removed using N-body simulations that realistically handle two-body relaxation. In contrast to previous studies, we find that hierarchical cluster formation occurs chiefly as a result of scattering of stars out of clumps, and not through clump merging. Two-body relaxation, in particular within the body of a clump, can significantly increase the rate at which substructure is erased beyond that of clump merging alone. Hence the relaxation time of individual clumps is a key parameter controlling the rate at which smooth, spherical star clusters can form. The initial virial ratio of the clumps is an additional key parameter controlling the formation rate of a cluster. Reducing the initial virial ratio causes a star cluster to lose its substructure more rapidly
Comparison of veterinary drugs and veterinary homeopathy: part 1
For many years after its invention around 1796, homeopathy was widely used in people and later in animals. Over the intervening period (1796-2016) pharmacology emerged as a science from Materia Medica (medicinal materials) to become the mainstay of veterinary therapeutics. There remains today a much smaller, but significant, use of homeopathy by veterinary surgeons. Homeopathic products are sometimes administered when conventional drug therapies have not succeeded, but are also used as alternatives to scientifically based therapies and licensed products. The principles underlying the veterinary use of drug-based and homeopathic products are polar opposites; this provides the basis for comparison between them. This two-part review compares and contrasts the two treatment forms in respect of history, constituents, methods of preparation, known or postulated mechanisms underlying responses, the legal basis for use and scientific credibility in the 21st century. Part 1 begins with a consideration of why therapeutic products actually work or appear to do so
- …
