224 research outputs found

    Assessing health and well-being among older people in rural South Africa

    Get PDF
    Background: The population in developing countries is ageing, which is likely to increase the burden of noncommunicable diseases and disability. Objective: To describe factors associated with self-reported health, disability and quality of life (QoL) of older people in the rural northeast of South Africa. Design: Cross-sectional survey of 6,206 individuals aged 50 and over. We used multivariate analysis to examine relationships between demographic variables and measures of self-reported health (Health Status), functional ability (WHODASi) and quality of life (WHOQoL). Results: About 4,085 of 6,206 people eligible (65.8%) completed the interview. Women (Odds Ratio (OR) 1.30, 95% CI 1.09, 1.55), older age (OR2.59, 95% CI 1.97, 3.40), lower education (OR1.62, 95% CI 1.31,2.00), single status (OR1.18, 95% CI 1.01, 1.37) and not working at present (OR1.29, 95% CI 1.06, 1.59) were associated with a low health status. Women were also more likely to report a higher level of disability (OR1.38, 95% CI 1.14, 1.66), as were older people (OR2.92, 95% CI 2.25, 3.78), those with no education (OR1.57, 95% CI 1.26, 1.97), with single status (OR1.25, 95% CI 1.06, 1.46) and not working at present (OR1.33, 95% CI 1.06, 1.66). Older age (OR1.35, 95% CI 1.06, 1.74), no education (OR1.39, 95% CI 1.11, 1.73), single status (OR1.28, 95% CI 1.10, 1.49), a low household asset score (OR1.52, 95% CI 1.19, 1.94) and not working at present (OR1.32; 95% CI 1.07, 1.64) were all associated with lower quality of life. Conclusions: This study presents the first population-based data from South Africa on health status, functional ability and quality of life among older people. Health and social services will need to be restructured to provide effective care for older people living in rural South Africa with impaired functionality and other health problems

    Volatility in the Housing Market: Evidence on Risk and Return in the London Sub-market

    Get PDF
    The impact of volatility in housing market analysis is reconsidered via examination of the risk-return relationship in the London housing market is examined. In addition to providing the first empirical results for the relationship between risk (as measured by volatility) and returns for this submarket, the analysis offers a more general message to empiricists via a detailed and explicit evaluation of the impact of empirical design decisions upon inferences. In particular, the negative risk-return relationship discussed frequently in the housing market literature is examined and shown to depend upon typically overlooked decisions concerning components of the empirical framework from which statistical inferences are drawn

    VX Hydrolysis by Human Serum Paraoxonase 1: A Comparison of Experimental and Computational Results

    Get PDF
    Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VXts) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VXts complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VXts coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.United States. Defense Threat Reduction Agenc

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B

    Get PDF
    Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. a-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to a-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of a-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by a-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal a-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to a-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-a-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with a-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in a-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT-Foundation for Science and Technology-for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) - project PTDC/DTPFTO/4973/2014 - and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundacao para a Ciencia e Tecnologia) through project Pest-C/EQB/LA0006/2013

    Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population.</p> <p>Results</p> <p>The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme <it>Hae</it>III; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts.</p> <p>Conclusion</p> <p>The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.</p

    A Comparison of rpoB and 16S rRNA as Markers in Pyrosequencing Studies of Bacterial Diversity

    Get PDF
    Background: The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria. &lt;p/&gt;Methodology/Principal Findings: Pyrosequencing can be problematic because of the poor resolution of homopolymer runs. As these erroneous runs disrupt the reading frame of protein-coding sequences, removal of sequences containing nonsense mutations was found to be a valuable filter in addition to flowgram-based denoising. Although both markers gave similar estimates of total diversity, the rpoB marker revealed more species, requiring an order of magnitude fewer reads to obtain 90% of the true diversity. The application of population genetic methods was demonstrated on a particularly abundant sequence cluster. &lt;p/&gt;Conclusions/Significance: The rpoB marker can be a complement to the 16S rRNA marker for high throughput microbial diversity studies focusing on specific taxonomic groups. Additional error filtering is possible and tests for recombination or selection can be employed

    Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

    Get PDF
    Background: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. Methodology/Principal Findings: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. Conclusions/Significance: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a.4 A ˚ widening of the DNA minor groove and a compression of the major groove by more than 4A ˚ as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression o
    corecore