752 research outputs found
The Beam Screen for the LHC Injection Kicker Magnets
The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour
Raman spectroscopy of human teeth using integrated optical spectrometers
We have designed an arrayed-waveguide grating in silicon oxynitride technology for the detection of Raman signals from tooth enamel in the spectral region between 890 nm and 912 nm. The detected signals for both parallel and cross polarizations are used to distinguish between healthy and carious regions on the tooth surface of extracted human teeth. Our experimental results are in very good agreement with those achieved using conventional Raman spectrometers. Our results represent a step toward the realization of compact, hand-held, integrated spectrometers
A non-Hermitian critical point and the correlation length of strongly correlated quantum systems
We study a non-Hermitian generalization of quantum systems in which an
imaginary vector potential is added to the momentum operator. In the
tight-binding approximation, we make the hopping energy asymmetric in the
Hermitian Hamiltonian. In a previous article, we conjectured that the
non-Hermitian critical point where the energy gap vanishes is equal to the
inverse correlation length of the Hermitian system and we confirmed the
conjecture for two exactly solvable systems. In this article, we present more
evidence for the conjecture. We also argue the basis of our conjecture by
noting the dispersion relation of the elementary excitation.Comment: 25 pages, 18 figure
Status of Schottky Diagnostics in the ANKA Storage Ring
The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed
Impedance measurements and simulations on the TCT and TDI LHC collimators
The LHC collimation system is a critical element for
the safe operation of the LHC machine and it is subject
to continuous performance monitoring, hardware upgrade
and optimization. In this work we will address the impact
on impedance of the upgrades performed on the injection
protection target dump (TDI), where the absorber material
has been changed to mitigate the device heating observed
in machine operation, and on selected secondary (TCS) and
tertiary (TCT) collimators, where beam position monitors
(BPM) have been embedded for faster jaw alignment. Con-
cerning the TDI, we will present the RF measurements per-
formed before and after the upgrade, comparing the result
to heating and tune shift beam measurements. For the TCTs,
we will study how the higher order modes (HOM) intro-
duced by the BPM addition have been cured by means of
ferrite placement in the device. The impedance mitigation
campaign has been supported by RF measurements whose
results are in good agreement with GdfidL and CST simula-
tions. The presence of undamped low frequency modes is
proved not to be detrimental to the safe LHC operation
Fast switching devices and induction rf at CLIC
We survey possible applications of fast switching devices and induction rf at the Compact Linear Collider (CLIC). These applications include extraction kickers for the combiner rings, modulators for the drive-beam linac, fast intra-train feedback, induction crab cavities, halo kickers, emergency kickers, long-range beam-beam compensation, damping-ring barrier rf, pulsed linac wigglers, positron capture, and spent-beam handling
Finite Temperature DMRG Investigation of the Spin-Peierls Transition in CuGeO
We present a numerical study of thermodynamical properties of dimerized
frustrated Heisenberg chains down to extremely low temperatures with
applications to CuGeO. A variant of the finite temperature density matrix
renormalization group (DMRG) allows the study of the dimerized phase previously
unaccessible to ab initio calculations. We investigate static dimerized systems
as well as the instability of the quantum chain towards lattice dimerization.
The crossover from a quadratic response in the free energy to the distortion
field at finite temperature to nonanalytic behavior at zero temperature is
studied quantitatively. Various physical quantities are derived and compared
with experimental data for CuGeO such as magnetic dimerization, critical
temperature, susceptibility and entropy.Comment: LaTeX, 5 pages, 5 eps figures include
Quantum-Mechanical Position Operator and Localization in Extended Systems
We introduce a fundamental complex quantity, , which allows us to
discriminate between a conducting and non-conducting thermodynamic phase in
extended quantum systems. Its phase can be related to the expectation value of
the position operator, while its modulus provides an appropriate definition of
a localization length. The expressions are valid for {\it any} fractional
particle filling. As an illustration we use to characterize insulator
to ``superconducting'' and Mott transitions in one-dimensional lattice models
with infinite on-site Coulomb repulsion at quarter filling.Comment: 4 pages, REVTEX, 1 ps figure
Superconductivity in an exactly solvable Hubbard model with bond-charge interaction
The Hubbard model with an additional bond-charge interaction is solved
exactly in one dimension for the case where is the hopping amplitude.
In this case the number of doubly occupied sites is conserved. In the sector
with no double occupations the model reduces to the Hubbard model.
In arbitrary dimensions the qualitative form of the phase diagram is obtained.
It is shown that for moderate Hubbard interactions the model has
superconducting ground states.Comment: Revtex, 14 pages, 1 figure (uuencoded compressed tar-file
Statistical Theory of Spin Relaxation and Diffusion in Solids
A comprehensive theoretical description is given for the spin relaxation and
diffusion in solids. The formulation is made in a general
statistical-mechanical way. The method of the nonequilibrium statistical
operator (NSO) developed by D. N. Zubarev is employed to analyze a relaxation
dynamics of a spin subsystem. Perturbation of this subsystem in solids may
produce a nonequilibrium state which is then relaxed to an equilibrium state
due to the interaction between the particles or with a thermal bath (lattice).
The generalized kinetic equations were derived previously for a system weakly
coupled to a thermal bath to elucidate the nature of transport and relaxation
processes. In this paper, these results are used to describe the relaxation and
diffusion of nuclear spins in solids. The aim is to formulate a successive and
coherent microscopic description of the nuclear magnetic relaxation and
diffusion in solids. The nuclear spin-lattice relaxation is considered and the
Gorter relation is derived. As an example, a theory of spin diffusion of the
nuclear magnetic moment in dilute alloys (like Cu-Mn) is developed. It is shown
that due to the dipolar interaction between host nuclear spins and impurity
spins, a nonuniform distribution in the host nuclear spin system will occur and
consequently the macroscopic relaxation time will be strongly determined by the
spin diffusion. The explicit expressions for the relaxation time in certain
physically relevant cases are given.Comment: 41 pages, 119 Refs. Corrected typos, added reference
- …
