1,314 research outputs found
The Thermal Properties of Solar Flares Over Three Solar Cycles Using GOES X-ray Observations
Solar flare X-ray emission results from rapidly increasing temperatures and
emission measures in flaring active region loops. To date, observations from
the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental
Satellite (GOES) have been used to derive these properties, but have been
limited by a number of factors, including the lack of a consistent background
subtraction method capable of being automatically applied to large numbers of
flares. In this paper, we describe an automated temperature and emission
measure-based background subtraction method (TEBBS), which builds on the
methods of Bornmann (1990). Our algorithm ensures that the derived temperature
is always greater than the instrumental limit and the pre-flare background
temperature, and that the temperature and emission measure are increasing
during the flare rise phase. Additionally, TEBBS utilizes the improved
estimates of GOES temperatures and emission measures from White et al. (2005).
TEBBS was successfully applied to over 50,000 solar flares occurring over
nearly three solar cycles (1980-2007), and used to create an extensive catalog
of the solar flare thermal properties. We confirm that the peak emission
measure and total radiative losses scale with background subtracted GOES X-ray
flux as power-laws, while the peak temperature scales logarithmically. As
expected, the peak emission measure shows an increasing trend with peak
temperature, although the total radiative losses do not. While these results
are comparable to previous studies, we find that flares of a given GOES class
have lower peak temperatures and higher peak emission measures than previously
reported. The resulting TEBBS database of thermal flare plasma properties is
publicly available on Solar Monitor (www.solarmonitor.org/TEBBS/) and will be
available on Heliophysics Integrated Observatory (www.helio-vo.eu)
Randomized controlled trial of traditional Chinese medicine (acupuncture and Tuina) in cerebral palsy: Part 1 - Any increase in seizure in integrated acupuncture and rehabilitation group versus rehabilitation group?
Objective: The objective of this study was to observe for any change in baseline seizure frequency with acupuncture in children with cerebral palsy. Methods: A randomized controlled study was conducted: Group I consisted of integrated acupuncture, tuina, and rehabilitation (physiotherapy, occupational therapy, and hydrotherapy) for 12 weeks; and Group II consisted of rehabilitation (physiotherapy, occupational therapy, and hydrotherapy) for 12 weeks. After a washout period of 4 weeks, Group II then received acupuncture and tuina for 12 weeks. Each subject received 5 daily acupuncture sessions per week for 12 weeks (total = 60 sessions). All children were assessed for any change in seizure frequency during treatment. Results: One hundred and sixteen (116) children were recruited and randomized into Group I (N = 58) and Group II (N = 58). Thirty-three (33) children withdrew (9 from Group I and 24 from Group II). Of the remaining 83 children, Group I consisted of 49 and Group II of 34 children. For baseline, 5 children (6%; 5/83) had seizures. During phase 1 (12 weeks) of integrative treatment and subsequent 4-week follow-up, 3 children in Group I had seizures. Among those 3 children with seizures, 1 child with prior history of recurrent febrile seizure had 3 more recurrent febrile seizures during acupuncture treatment and 2 children without any prior history of seizures had new-onset seizures (1 with 3 recurrent febrile seizures and 1 with afebrile seizure). For Group I, 2 children with epilepsy had no increase in seizure frequency during acupuncture treatment. For Group II during the phase 2 acupuncture period, none had increase in seizure frequency. In both groups, 4 of 5 children (80%; 2 in Group I and 2 in Group II) with seizures had no increase in seizure frequency during acupuncture treatment and follow-up. Conclusions: The risk of increasing seizure is not increased with acupuncture treatment for cerebral palsy. © 2008 Mary Ann Liebert, Inc.published_or_final_versio
Probing microscopic origins of confined subdiffusion by first-passage observables
Subdiffusive motion of tracer particles in complex crowded environments, such
as biological cells, has been shown to be widepsread. This deviation from
brownian motion is usually characterized by a sublinear time dependence of the
mean square displacement (MSD). However, subdiffusive behavior can stem from
different microscopic scenarios, which can not be identified solely by the MSD
data. In this paper we present a theoretical framework which permits to
calculate analytically first-passage observables (mean first-passage times,
splitting probabilities and occupation times distributions) in disordered media
in any dimensions. This analysis is applied to two representative microscopic
models of subdiffusion: continuous-time random walks with heavy tailed waiting
times, and diffusion on fractals. Our results show that first-passage
observables provide tools to unambiguously discriminate between the two
possible microscopic scenarios of subdiffusion. Moreover we suggest experiments
based on first-passage observables which could help in determining the origin
of subdiffusion in complex media such as living cells, and discuss the
implications of anomalous transport to reaction kinetics in cells.Comment: 21 pages, 3 figures. Submitted versio
Rewriting Logic Semantics of a Plan Execution Language
The Plan Execution Interchange Language (PLEXIL) is a synchronous language
developed by NASA to support autonomous spacecraft operations. In this paper,
we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance
logical engine. The rewriting logic semantics is by itself a formal interpreter
of the language and can be used as a semantic benchmark for the implementation
of PLEXIL executives. The implementation in Maude has the additional benefit of
making available to PLEXIL designers and developers all the formal analysis and
verification tools provided by Maude. The formalization of the PLEXIL semantics
in rewriting logic poses an interesting challenge due to the synchronous nature
of the language and the prioritized rules defining its semantics. To overcome
this difficulty, we propose a general procedure for simulating synchronous set
relations in rewriting logic that is sound and, for deterministic relations,
complete. We also report on two issues at the design level of the original
PLEXIL semantics that were identified with the help of the executable
specification in Maude
Tension Dynamics and Linear Viscoelastic Behavior of a Single Semiflexible Polymer Chain
We study the dynamical response of a single semiflexible polymer chain based
on the theory developed by Hallatschek et al. for the wormlike-chain model. The
linear viscoelastic response under oscillatory forces acting at the two chain
ends is derived analytically as a function of the oscillation frequency . We
shall show that the real part of the complex compliance in the low frequency
limit is consistent with the static result of Marko and Siggia whereas the
imaginary part exhibits the power-law dependence +1/2. On the other hand, these
compliances decrease as the power law -7/8 for the high frequency limit. These
are different from those of the Rouse dynamics. A scaling argument is developed
to understand these novel results.Comment: 23 pages, 6 figure
Elastic deformation of a fluid membrane upon colloid binding
When a colloidal particle adheres to a fluid membrane, it induces elastic
deformations in the membrane which oppose its own binding. The structural and
energetic aspects of this balance are theoretically studied within the
framework of a Helfrich Hamiltonian. Based on the full nonlinear shape
equations for the membrane profile, a line of continuous binding transitions
and a second line of discontinuous envelopment transitions are found, which
meet at an unusual triple point. The regime of low tension is studied
analytically using a small gradient expansion, while in the limit of large
tension scaling arguments are derived which quantify the asymptotic behavior of
phase boundary, degree of wrapping, and energy barrier. The maturation of
animal viruses by budding is discussed as a biological example of such
colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem
<div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
Autoimmune and autoinflammatory mechanisms in uveitis
The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders
- …
