437 research outputs found
Large amplitude tip/tilt estimation by geometric diversity for multiple-aperture telescopes
A novel method nicknamed ELASTIC is proposed for the alignment of
multiple-aperture telescopes, in particular segmented telescopes. It only needs
the acquisition of two diversity images of an unresolved source, and is based
on the computation of a modified, frequency-shifted, cross-spectrum. It
provides a polychromatic large range tip/tilt estimation with the existing
hardware and an inexpensive noniterative unsupervised algorithm. Its
performance is studied and optimized by means of simulations. They show that
with 5000 photo-electrons/sub-aperture/frame and 1024x1024 pixel images,
residues are within the capture range of interferometric phasing algorithms
such as phase diversity. The closed-loop alignment of a 6 sub-aperture mirror
provides an experimental demonstration of the effectiveness of the method.
Author accepted version. Final version is Copyright 2017 Optical Society of
America. One print or electronic copy may be made for personal use only.
Systematic reproduction and distribution, duplication of any material in this
paper for a fee or for commercial purposes, or modifications of the content of
this paper are prohibited.Comment: Final version:
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-34-8-127
Comparison of fringe-tracking algorithms for single-mode near-infrared long-baseline interferometers
To enable optical long baseline interferometry toward faint objects, long
integrations are necessary despite atmospheric turbulence. Fringe trackers are
needed to stabilize the fringes and thus increase the fringe visibility and
phase signal-to-noise ratio (SNR), with efficient controllers robust to
instrumental vibrations, and to subsequent path fluctuations and flux
drop-outs.
We report on simulations, analysis and comparison of the performances of a
classical integrator controller and of a Kalman controller, both optimized to
track fringes under realistic observing conditions for different source
magnitudes, disturbance conditions, and sampling frequencies. The key
parameters of our simulations (instrument photometric performance, detection
noise, turbulence and vibrations statistics) are based on typical observing
conditions at the Very Large Telescope observatory and on the design of the
GRAVITY instrument, a 4-telescope single-mode long baseline interferometer in
the near-infrared, next in line to be installed at VLT Interferometer.
We find that both controller performances follow a two-regime law with the
star magnitude, a constant disturbance limited regime, and a diverging detector
and photon noise limited regime. Moreover, we find that the Kalman controller
is optimal in the high and medium SNR regime due to its predictive commands
based on an accurate disturbance model. In the low SNR regime, the model is not
accurate enough to be more robust than an integrator controller. Identifying
the disturbances from high SNR measurements improves the Kalman performances in
case of strong optical path difference disturbances.Comment: Accepted for publication in A&A. 17 pages 15 figure
Echantillonnage des populations de Muridés : influence du protocole de piégeage sur l'estimation des paramètres démographiques
Utilisation de poudres fluorescentes pour l'analyse des déplacements des petits rongeurs dans la nature
GRAVITY: getting to the event horizon of Sgr A*
We present the second-generation VLTI instrument GRAVITY, which currently is
in the preliminary design phase. GRAVITY is specifically designed to observe
highly relativistic motions of matter close to the event horizon of Sgr A*, the
massive black hole at center of the Milky Way. We have identified the key
design features needed to achieve this goal and present the resulting
instrument concept. It includes an integrated optics, 4-telescope, dual feed
beam combiner operated in a cryogenic vessel; near infrared wavefront sensing
adaptive optics; fringe tracking on secondary sources within the field of view
of the VLTI and a novel metrology concept. Simulations show that the planned
design matches the scientific needs; in particular that 10 microarcsecond
astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given
the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE
Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc
Off-Axis Nulling Transfer Function Measurement: A First Assessment
We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp 4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results
Direct constraint on the distance of y2 Velorum from AMBER/VLTI observations
In this work, we present the first AMBER observations, of the Wolf-Rayet and
O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the
telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered
spectrally dispersed visibilities, as well as differential and closure phases,
with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret
these data in the context of a binary system with unresolved components,
neglecting in a first approximation the wind-wind collision zone flux
contribution. We show that the AMBER observables result primarily from the
contribution of the individual components of the WR+O binary system. We discuss
several interpretations of the residuals, and speculate on the detection of an
additional continuum component, originating from the free-free emission
associated with the wind-wind collision zone (WWCZ), and contributing at most
to the observed K-band flux at the 5% level. The expected absolute separation
and position angle at the time of observations were 5.1±0.9mas and
66±15° respectively. However, we infer a separation of
3.62+0.11-0.30 mas and a position angle of 73+9-11°. Our analysis thus
implies that the binary system lies at a distance of 368+38-13 pc, in agreement
with recent spectrophotometric estimates, but significantly larger than the
Hipparcos value of 258+41-31 pc
- …
