31 research outputs found

    An imprinted non-coding genomic cluster at 14q32 defines clinically relevant molecular subtypes in osteosarcoma across multiple independent datasets

    Get PDF
    Abstract Background A microRNA (miRNA) collection on the imprinted 14q32 MEG3 region has been associated with outcome in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status. Methods We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma cohorts (n = 65, n = 27, and n = 25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical (NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80) dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14q32 and their association with miRNA expression and tumor aggressiveness. Results In the tdROC analysis, miRNA sets on 14q32 showed strong discriminatory power for recurrence and survival in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines and were associated with expression of several 14q32 miRNAs in both the cell lines and the large TARGET clinical dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of the non-coding RNA cluster by CTCF, a known enhancer-blocking factor. Conclusions Loss of imprinting/methylation changes in the 14q32 non-coding region defines reproducible previously unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future studies will define the precise relationship between 14q32 imprinting, non-coding RNA expression, genomic enhancer binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients

    HERVs establish a distinct molecular subtype in stage II/III colorectal cancer with poor outcome

    Get PDF
    © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Colorectal cancer (CRC) is one of the most lethal malignancies. The extreme heterogeneity in survival rate is driving the need for new prognostic biomarkers. Human endogenous retroviruses (hERVs) have been suggested to influence tumor progression, oncogenesis and elicit an immune response. We examined multiple next-generation sequencing (NGS)-derived biomarkers in 114 CRC patients with paired whole-exome and whole-transcriptome sequencing (WES and WTS, respectively). First, we demonstrate that the median expression of hERVs can serve as a potential biomarker for prognosis, relapse, and resistance to chemotherapy in stage II and III CRC. We show that hERV expression and CD8+ tumor-infiltrating T-lymphocytes (TILs) synergistically stratify overall and relapse-free survival (OS and RFS): the median OS of the CD8-/hERV+ subgroup was 29.8 months compared with 37.5 months for other subgroups (HR = 4.4, log-rank P < 0.001). Combing NGS-based biomarkers (hERV/CD8 status) with clinicopathological factors provided a better prediction of patient survival compared to clinicopathological factors alone. Moreover, we explored the association between genomic and transcriptomic features of tumors with high hERV expression and establish this subtype as distinct from previously described consensus molecular subtypes of CRC. Overall, our results underscore a previously unknown role for hERVs in leading to a more aggressive subtype of CRC.The biobanking of CRC from Hospital Santa Maria, Lisbon, Portugal, was supported by a grant from the Official Portuguese Funding Agency for Science and Technology (FCT: PIC/IC/82821/2007).info:eu-repo/semantics/publishedVersio

    Exploring Novel System Biology Approaches to Understand the Molecular Mechanisms of Immune Responses

    Get PDF
    Entire new molecular worlds of immunity and autoimmunity have been unveiled through the lens of systems biology. Although many believe that vertebrates maintain the most complex immune system, a rival to this concept is arising due to a systems\u27 biology perspective of plant immunity. There are various rising systems biology approaches that unveil this previously uncharted territory. The organization of subjects within systems biology including -omes and protein-protein interaction networks enhance such exploration. The field of plant immune network biology is growing alike its parts: prevailing computational modeling approaches of biological regulatory network dynamics, rising technologies and availing research avenues pertaining to the -omics approach. Systems biology approaches also pursue clues related to the molecular mechanisms of human autoimmunity, a current mystery. Although the factors that cause the onset of systemic lupus erythematosus (SLE) are not fully understood, it is known to have several genetic risk factors. One factor relates to the fragment crystallizable gamma receptor gene 2B, FCGR2B, that codes for the protein FcgRIIB. FcgRIIB is responsible for maintaining homeostasis within a cell by simultaneously triggering the activation or inhibition of receptors related to undesired autoimmune responses. Systems biology provides effective approaches towards uncovering the role of human fragment crystallizable receptors (FCRs) in autoimmunity. In this thesis, three primary objectives were pursued to expand the knowledge of molecular human autoimmunity: the identification of novel interacting partners of FCRs\u27 cytoplasmic domains; the finding of statistically overrepresented cis-regulatory elements in FCGR2B and identification of their cognate transcription factors; and the identification of FCGR2B CNV (Copy number variation) in SLE patients. The first objective entailed the application of a yeast-two hybrid assay, a high-throughput technology that identified protein-protein interactions and resulted in the generation of the first human autoimmune network. Bioinformatic tools that identify motifs, namely MEME and POBO, were utilized for the second objective. Lastly, the third objective entailed a revamped methodological approach that yielded a full-length RACE PCR product of the 1q23 gene cluster, which is the location of the FCGR2B gene. This full-length product enables the investigation for associations between FCGR2B CNV and SLE onset

    Abstract 2315: Inhibition of cyclin-dependent kinase 4 as a potential therapeutic strategy for treatment of synovial sarcoma

    No full text
    Abstract Synovial sarcoma is a rare and aggressive form of soft tissue cancer that affects the extremities of the arms or legs, for which current chemotherapeutic agents have not been proven to be very effective. The cyclin-dependent kinase 4/6-retinoblastoma protein (CDK4/6-Rb) pathway is aberrant in a large proportion of cancer. Recent evidences on pre-clinical application of CDK4 inhibitors have been implicated in many types of human cancers, and the FDA has approved the CDK4 selective inhibitor for the treatment of breast cancer. However, the expression and therapeutic potential of CDK4 in synovial sarcoma remain unclear. In the present study, we examined the expression of CDK4 in synovial sarcoma cell lines by western blot and immunofluorescence assay, and in synovial sarcoma tissue microassays by immunohistochemical analysis. Cell viabilities were determined by MTT assay after exposure to different dosages of the selective CDK4 inhibitor. Flow cytometry analysis and wound healing assay were conducted to determine the mechanisms underlying the cytotoxic effects of the selective CDK4 inhibitor. CDK4 specific small interference RNA was used to validate the effect of targeting CDK4 by the selective CDK4 inhibitor in synovial sarcoma cells. We found that CDK4 was highly expressed in human synovial sarcoma, and was related to clinical stage and TNM grade in synovial sarcoma patients and poor prognosis in sarcoma patients. Cell viabilities determined by MTT assay after exposure to different dosages of the selective CDK4 inhibitor showed that this selective CDK4 inhibitor repressed synovial sarcoma cell proliferation and growth in a dose- and time- dependent manner. The selective CDK4 inhibitor inhibited the CDK4/6-Rb signaling pathway and promoted cell apoptosis without influence on the expression of CDK4/6, suggesting that the selective CDK4 inhibitor only repressed the hyperactivation, not the production of CDK4/6. The inhibition effect of the selective CDK4 inhibitor was confirmed by knockdown of CDK4 with specific small interference RNA. Flow cytometry analysis revealed that the selective CDK4 inhibitor induced G1 cell-cycle arrest by targeting CDK4/6-Rb pathway in synovial sarcoma cells. Furthermore, the wound healing assay exhibited that inhibition of CDK4/6-Rb pathway with the use of the selective CDK4 inhibitor significantly decreased synovial sarcoma cell migration in vitro. Our data highlight the role of dysregulated CDK4/6-Rb pathway and current selective CDK4/6 inhibitor may be a potential promising therapeutic agent in the targeted treatment of human synovial sarcoma. Citation Format: Xiaoyang Li, Cassandra Garbutt, Francis John Hornicek, Zhenfeng Duan. Inhibition of cyclin-dependent kinase 4 as a potential therapeutic strategy for treatment of synovial sarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2315

    Potentials of Long Noncoding RNAs (LncRNAs) in Sarcoma: From Biomarkers to Therapeutic Targets

    No full text
    Sarcoma includes some of the most heterogeneous tumors, which make the diagnosis, prognosis and treatment of these rare yet diverse neoplasms especially challenging. Long noncoding RNAs (lncRNAs) are important regulators of cancer initiation and progression, which implies their potential as neoteric prognostic and diagnostic markers in cancer, including sarcoma. A relationship between lncRNAs and sarcoma pathogenesis and progression is emerging. Recent studies demonstrate that lncRNAs influence sarcoma cell proliferation, metastasis, and drug resistance. Additionally, lncRNA expression profiles are predictive of sarcoma prognosis. In this review, we summarize contemporary advances in the research of lncRNA biogenesis and functions in sarcoma. We also highlight the potential for lncRNAs to become innovative diagnostic and prognostic biomarkers as well as therapeutic targets in sarcoma

    Advances in chromosomal translocations and fusion genes in sarcomas and potential therapeutic applications

    No full text
    •Chromosomal translocations and fusion genes are especially common in sarcomas.•Novel chromosomal translocations and fusion genes have been discovered in sarcomas.•Fusion genes and affected downstream signaling pathway provide therapeutic targets.•Novel therapeutic targets show promise in future treatment of sarcomas. Chromosomal translocations and fusion genes are very common in human cancer especially in subtypes of sarcomas, such as rhabdomyosarcoma, Ewing's sarcoma, synovial sarcoma and liposarcoma. The discovery of novel chromosomal translocations and fusion genes in different tumors are due to the advancement of next-generation sequencing (NGS) technologies such as whole genome sequencing. Recently, many novel chromosomal translocations and gene fusions have been identified in different types of sarcoma through NGS approaches. In addition to previously known sarcoma fusion genes, these novel specific fusion genes and associated molecular events represent important targets for novel therapeutic approaches in the treatment of sarcomas. This review focuses on recent advances in chromosomal translocations and fusion genes in sarcomas and their potential therapeutic applications in the treatment of sarcomas
    corecore