46 research outputs found

    Paw Morphology in the Domestic Guinea Pig (Cavia porcellus) and Brown Rat (Rattus norvegicus).

    Get PDF
    Mammals have adapted to different habitats, food types and modes of locomotion, which are reflected in a diverse range of paw morphologies. While the behaviour of rats and guinea pigs is well-defined, especially in terms of their locomotor and foraging behaviours, the anatomy of their foot pads has not yet been explored and compared. This study investigated adaptations in paw morphology in the domestic guinea pig (Cavia porcellus) and the brown rat (Rattus norvegicus). We predicted that rat paws would display adaptations associated with paw dexterity for handling prey items and climbing; whereas guinea pig paws would support mechanical pressure absorption for a herbivorous, sedentary and terrestrial lifestyle. Using histology techniques and scanning electron microscope, we show that rat paws have many small, deformable pads that are relatively spaced out to enable movement. The pads are clustered towards the anterior of the foot, which coincides with where the most force occurs during locomotion, as rats walk on their toes and towards the front of their paw. Guinea pigs had fewer and larger pads and the posterior pad of the forepaw was textured and contained cartilage, which may act to reduce friction and compression during standing and locomotion. We suggest that differences in paw morphology in rat and guinea pig are associated with loading during locomotion as well as paw mobility. Examining paw morphology and movement abilities in more species will give further insights in to the evolution of locomotor adaptations and paw dexterity in rodents. This article is protected by copyright. All rights reserved

    Offspring Hormones Reflect the Maternal Prenatal Social Environment: Potential for Foetal Programming?

    Get PDF
    Females of many species adaptively program their offspring to predictable environmental conditions, a process that is often mediated by hormones. Laboratory studies have shown, for instance, that social density affects levels of maternal cortisol and testosterone, leading to fitness-relevant changes in offspring physiology and behaviour. However, the effects of social density remain poorly understood in natural populations due to the difficulty of disentangling confounding influences such as climatic variation and food availability. Colonially breeding marine mammals offer a unique opportunity to study maternal effects in response to variable colony densities under similar ecological conditions. We therefore quantified maternal and offspring hormone levels in 84 Antarctic fur seals (Arctocephalus gazella) from two closely neighbouring colonies of contrasting density. Hair samples were used as they integrate hormone levels over several weeks or months and therefore represent in utero conditions during foetal development. We found significantly higher levels of cortisol and testosterone (both P < 0.001) in mothers from the high density colony, reflecting a more stressful and competitive environment. In addition, offspring testosterone showed a significant positive correlation with maternal cortisol (P < 0.05). Although further work is needed to elucidate the potential consequences for offspring fitness, these findings raise the intriguing possibility that adaptive foetal programming might occur in fur seals in response to the maternal social environment. They also lend support to the idea that hormonally mediated maternal effects may depend more strongly on the maternal regulation of androgen rather than cortisol levels

    The Cost of Male Aggression and Polygyny in California Sea Lions (Zalophus californianus)

    Get PDF
    In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding season (June–August) affect female fecundity, a vital rate that is an important determinant of population growth rate and viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that male behavior and spatial dynamics—aggression and territory size—are significantly related to female fecundity. Higher rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was measured and in the following year. These results indicate that while male aggression and defense of territories may increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression—perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may increase male fitness at the cost of female fitness and overall population viability

    Weak Polygyny in California Sea Lions and the Potential for Alternative Mating Tactics

    Get PDF
    Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species

    Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of studies have described the extension of ice cover in western Patagonia during the Last Glacial Maximum, providing evidence of a complete cover of terrestrial habitat from 41°S to 56°S and two main refugia, one in south-eastern Tierra del Fuego and the other north of the Chiloé Island. However, recent evidence of high genetic diversity in Patagonian river species suggests the existence of aquatic refugia in this region. Here, we further test this hypothesis based on phylogeographic inferences from a semi-aquatic species that is a top predator of river and marine fauna, the huillín or Southern river otter (<it>Lontra provocax</it>).</p> <p>Results</p> <p>We examined mtDNA sequences of the control region, ND5 and Cytochrome-b (2151 bp in total) in 75 samples of <it>L. provocax </it>from 21 locations in river and marine habitats. Phylogenetic analysis illustrates two main divergent clades for <it>L. provocax </it>in continental freshwater habitat. A highly diverse clade was represented by haplotypes from the marine habitat of the Southern Fjords and Channels (SFC) region (43°38' to 53°08'S), whereas only one of these haplotypes was paraphyletic and associated with northern river haplotypes.</p> <p>Conclusions</p> <p>Our data support the hypothesis of the persistence of <it>L. provocax </it>in western Patagonia, south of the ice sheet limit, during last glacial maximum (41°S latitude). This limit also corresponds to a strong environmental change, which might have spurred <it>L. provocax </it>differentiation between the two environments.</p

    A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats

    Get PDF
    Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles
    corecore