403 research outputs found

    Sex steroids, carcinogenesis, and cancer progression

    Get PDF
    The relationship between sex steroids and cancer has been studied for more than a century. Using an original intact cell analysis, we investigated sex steroid metabolism in a panel of human cancer cell lines, either hormone responsive or unresponsive, originating from human breast, endometrium, and prostate. We found that highly divergent patterns of steroid metabolism exist and that the catalytic preference (predominantly reductive or oxidative) is strictly associated with the steroid receptor status of cells. We explored intra-tissue concentrations and profiles of estrogens in a set of human breast tumors as compared to normal mammary tissues, also in relation to their estrogen receptor status. In particular, we showed that, with hydroxyestrogens representing the majority of all tissue estrogens, concentrations of individual metabolites, as well as their ratios, significantly differ when comparing normal tissue with cancer tissues or when they are related to the overall survival of cancer patients. © 2004 New York Academy of Sciences

    Combined Docking and Quantum Chemical Study on CYP-mediated Metabolism of Estrogens in Man

    Get PDF
    Long-term exposure to estrogens seriously increases the incidence of various diseases including breast cancer. Experimental studies indicate that cytochrome P450 (CYP) enzymes catalyze the bioactivation of estrogens to catechols, which can exert their harmful effects via various routes. It has been shown that the 4-hydroxylation pathway of estrogens is the most malign, while 2-hydroxylation is considered a benign pathway. It is also known experimentally that with increasing unsaturation of ring B of estrogens the prevalence of the 4-hydroxylation pathway significantly increases. In this study, we used a combination of structural analysis, docking, and quantum chemical calculations at the B3LYP/6-311+G* level to investigate the factors that influence the regioselectivity of estrogen metabolism in man. We studied the structure of human estrogen metabolizing enzymes (CYP1A1, CYP1A2, CYP1B1, and CYP3A4) in complex with estrone using docking and investigated the susceptibility of estrone, equilin, and equilenin (which only differ in the unsaturation of ring B) to undergo 2- and 4-hydroxylation using several models of CYP enzymes (Compound I, methoxy, and phenoxy radical). We found that even the simplest models could account for the experimental difference between the 2- and 4- hydroxylation pathways and thus might be used for fast screening purposes. We also show that reactivity indices, specifically in this case the radical and nucleophilic condensed Fukui functions, also correctly predict the likeliness of estrogen derivatives to undergo 2- or 4-hydroxylation

    Steroid Metabolism and Content of Normal and Neoplastic Tissues and Cells

    Get PDF
    This thesis examines metabolism of steroids, evaluated through conversion rates of precursors (like oestradiol (E2) and testosterone (T)) in "in vitro"' systems. Several long term cell lines derived from the endocrine related tumours of breast, endometrium and prostate were used

    Risk of colorectal cancer in men on long-term androgen deprivation therapy for prostate cancer

    Full text link
    Background Androgen deprivation with gonadotropin-releasing hormone (GnRH) agonists or orchiectomy is a common but controversial treatment for prostate cancer. Uncertainties remain about its use, particularly with increasing recognition of serious side effects. In animal studies, androgens protect against colonic carcinogenesis, suggesting that androgen deprivation may increase the risk of colorectal cancer. Methods We identified 107 859 men in the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare database who were diagnosed with prostate cancer in 1993 through 2002, with follow-up available through 2004. The primary outcome was development of colorectal cancer, determined from SEER files on second primary cancers. Cox proportional hazards regression was used to assess the influence of androgen deprivation on the outcome, adjusted for patient and prostate cancer characteristics. All statistical tests were two-sided. Results Men who had orchiectomies had the highest unadjusted incidence rate of colorectal cancer (6.3 per 1000 person-years; 95% confidence interval [CI] = 5.3 to 7.5), followed by men who had GnRH agonist therapy (4.4 per 1000 person-years; 95% CI = 4.0 to 4.9), and men who had no androgen deprivation (3.7 per 1000 person-years; 95% CI = 3.5 to 3.9). After adjustment for patient and prostate cancer characteristics, there was a statistically significant dose-response effect (P(trend) = .010) with an increasing risk of colorectal cancer associated with increasing duration of androgen deprivation. Compared with the absence of these treatments, there was an increased risk of colorectal cancer associated with use of GnRH agonist therapy for 25 months or longer (hazard ratio [HR] = 1.31, 95% CI = 1.12 to 1.53) or with orchiectomy (HR = 1.37, 95% CI = 1.14 to 1.66). Conclusion Long-term androgen deprivation therapy for prostate cancer is associated with an increased risk of colorectal cancer
    corecore