5,921 research outputs found

    Area Quantization in Quasi-Extreme Black Holes

    Get PDF
    We consider quasi-extreme Kerr and quasi-extreme Schwarzschild-de Sitter black holes. From the known analytical expressions obtained for their quasi-normal modes frequencies, we suggest an area quantization prescription for those objects.Comment: Final version to appear in Mod. Phys. Lett.

    High overtones of Dirac perturbations of a Schwarzschild black hole

    Full text link
    Using the Frobenius method, we find high overtones of the Dirac quasinormal spectrum for the Schwarzschild black hole. At high overtones, the spacing for imaginary part of ωn\omega_{n} is equidistant and equals to ωn+1ωn=i/8M\Im{\omega_{n+1}}-\Im{\omega_{n}} =i/8M, (MM is the black hole mass), which is twice less than that for fields of integer spin. At high overtones, the real part of ωn\omega_{n} goes to zero. This supports the suggestion that the expected correspondence between quasinormal modes and Barbero-Immirzi parameter in Loop Quantum Gravity is just a numerical coincidence.Comment: 5 pages, Latex, 3 figures, Physical Review D.,at pres

    Quasi-normal modes of the scalar hairy black hole

    Full text link
    We calculate QNMs of the scalar hairy black hole in the AdS background using Horowitz-Hubeny method for the potential that is not known in analytical form. For some black hole parameters we found pure imaginary frequencies. Increasing of the scalar field mass does not cause the imaginary part to vanish, it reaches some minimum and then increases, thus in the case under consideration the infinitely long living modes (quasi-resonances) do not appear.Comment: 17 pages, 17 figures, LaTe

    Gravitational Energy of Kerr and Kerr Anti-de Sitter Space-times in the Teleparallel Geometry

    Full text link
    In the context of the Hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes.Comment: 11 pages, 1 figure, to appear in JHEP11(2003)00

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    Support of dS/CFT correspondence from space-time perturbations

    Get PDF
    We analyse the spectrum of perturbations of the de Sitter space on the one hand, while on the other hand we compute the location of the poles in the Conformal Field Theory (CFT) propagator at the border. The coincidence is striking, supporting a dS/CFT correspondence. We show that the spectrum of thermal excitations of the CFT at the past boundary II^{-} together with that spectrum at the future boundary I+I^{+} is contained in the quasi-normal mode spectrum of the de Sitter space in the bulk.Comment: Modified version, appearing in Phys. Rev. D66 (2002) 10401

    First national survey of antibiotic susceptibility of the Bacteroides fragilis group: emerging resistance to carbapenems in Argentina

    Get PDF
    The antibiotic susceptibility rates of 363 clinical Bacteroides fragilis group isolates collected from 17 centers in Argentina during the period from 2006 to 2009 were as follows: piperacillin-tazobactam, 99%; ampicillin-sulbactam, 92%; cefoxitin, 72%; tigecycline, 100%; moxifloxacin, 91%; and clindamycin, 52%. No metronidazole resistance was detected in these isolates during this time period. Resistance to imipenem, doripenem, and ertapenem was observed in 1.1%, 1.6%, and 2.3% of B. fragilis group strains, respectively. B. fragilis species showed a resistance profile of 1.5% to imipenem, 1.9% to doripenem, and 2.4% to ertapenem. This is the first report of carbapenem resistance in Argentina. The cfiA gene was present in 8 out of 23 isolates, all of them belonging to the B. fragilis species and displaying reduced susceptibility or resistance to carbapenems (MICs ≥ 4 μg/ml). Three out of eight cfiA-positive isolates were fully resistant to carbapenems, while 5 out of 8 isolates showed low-level resistance (MICs, 4 to 8 μg/ml). The inhibition by EDTA was a good predictor of the presence of metallo-β-lactamases in the fully resistant B. fragilis strains, but discrepant results were observed for low-level resistant isolates. B. fragilis was more susceptible to antimicrobial agents than other Bacteroides species. Bacteroides vulgatus species was the most resistant to ampicillin-sulbactam and piperacillin-tazobactam, and B. thetaiotaomicron/ovatus strains showed the highest level of resistance to carbapenems, with an unknown resistance mechanism. B. vulgatus and the uncommon non-Bacteroides fragilis species were the most resistant to moxifloxacin, showing an overall resistance rate of 15.1%.Fil: Fernández Canigia, Liliana. Asociación Argentina de Microbiología; ArgentinaFil: Litterio, Mirta. Asociación Argentina de Microbiología; ArgentinaFil: Legaria, María C.. Asociación Argentina de Microbiología; ArgentinaFil: Castello, Liliana. Asociación Argentina de Microbiología; ArgentinaFil: Predari, Silvia C.. Asociación Argentina de Microbiología; ArgentinaFil: Di Martino, Ana. Asociación Argentina de Microbiología; ArgentinaFil: Rossetti, Adelaida. Asociación Argentina de Microbiología; ArgentinaFil: Rollet, Raquel. Asociación Argentina de Microbiología; ArgentinaFil: Carloni, Graciela. Asociación Argentina de Microbiología; ArgentinaFil: Bianchini, Hebe. Asociación Argentina de Microbiología; ArgentinaFil: Cejas, Daniela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Radice, Marcela Alejandra. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gutkind, Gabriel Osvaldo. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Anaerobe Surveillance Team

    The gravitational energy-momentum flux

    Full text link
    We present a continuity equation for the gravitational energy-momentum, which is obtained in the framework of the teleparallel equivalent of general relativity. From this equation it follows a general definition for the gravitational energy-momentum flux. This definition is investigated in the context of plane waves and of cylindrical Einstein-Rosen waves. We obtain the well known value for the energy flux of plane gravitational waves, and conclude that the latter exhibit features similar to plane electromagnetic waves.Comment: 20 pages, latex file, no figures, two references added, accepted for publication in Class. Quantum Gravit
    corecore