206 research outputs found
Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modelling
The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10−6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni2+, Cs+ and Ln3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta 69, 4937–4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be double bond; length as m-dashAlOEu2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the double bond; length as m-dashAlOEu2+ edge complexes. Finally, we successfully tested the performance of our model by confronting the predictions with experimental Kd data. We used our own data obtained at lower ionic strength (previous study) or higher suspension density and higher starting concentration (TRLFS runs, this study), as well as published data from other experimental studies [Bradbury, M.H., Baeyens, B., 2002. Sorption of Eu on Na and Ca-montmorillonite: experimental investigations and modeling with cation exchange and surface complexation. Geochim. Cosmochim. Acta 66, 2325–2334; Kowal-Fouchard, A., 2002. Etude des mécanismes de rétention des ions U(IV) et Eu(III) sur les argiles: influence des silicates. Ph.D. Thesis, Université Paris Sud, France, 330p]
Selective modulation of visual sensitivity during fixation
During periods of steady fixation, we make small amplitude ocular movements, termed microsaccades, at a rate of 1-2 every second. Early studies provided evidence that visual sensitivity is reduced during microsaccades - akin to the well-established suppression associated with larger saccades. However, the results of more recent work suggest that microsaccades may alter retinal input in a manner that enhances visual sensitivity to some stimuli. Here, we parametrically varied the spatial frequency of a stimulus during a detection task and tracked contrast sensitivity as a function of time relative to microsaccades. Our data reveal two distinct modulations of sensitivity: suppression during the eye movement itself, and facilitation after the eye has stopped moving. The magnitude of suppression and facilitation of visual sensitivity is related to the spatial content of the stimulus: suppression is greatest for low spatial frequencies while sensitivity is enhanced most for stimuli of 1-2 c/deg, spatial frequencies at which we are already most sensitive in the absence of eye movements. We present a model where the tuning of suppression and facilitation is explained by delayed lateral inhibition between spatial frequency channels. Our data show that eye movements actively modulate visual sensitivity even during fixation: the detectability of images at different spatial scales can be increased or decreased depending on when the image occurs relative to a microsaccade
Optical properties of perovskite alkaline earth titanates : a formulation
In this communication we suggest a formulation of the optical conductivity as
a convolution of an energy resolved joint density of states and an
energy-frequency labelled transition rate. Our final aim is to develop a scheme
based on the augmented space recursion for random systems. In order to gain
confidence in our formulation, we apply the formulation to three alkaline earth
titanates CaTiO_3, SrTiO_3 and BaTiO_3 and compare our results with available
data on optical properties of these systems.Comment: 19 pages, 9 figures, Submitted to Journal of Physics: Condensed
Matte
Charge Ordering in Organic ET Compounds
The charge ordering phenomena in quasi two-dimensional 1/4-filled organic
compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the
and -type structures, based on the Hartree approximation for the
extended Hubbard models with both on-site and intersite Coulomb interactions.
It is found that charge ordered states of stripe-type are stabilized for the
relevant values of Coulomb energies, while the spatial pattern of the stripes
sensitively depends on the anisotropy of the models. By comparing the results
of calculations with the experimental facts, where the effects of quantum
fluctuation is incorporated by mapping the stripe-type charge ordered states to
the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating
phases of -(ET)_2MM'(SCN)_4 and -(ET)_2I_3 are deduced.
Furthermore, to obtain a unified view among the , and
-(ET)_2X families, the stability of the charge ordered state in
competition with the dimeric antiferromagnetic state viewed as the Mott
insulating state, which is typically realized in -type compounds, and
with the paramagnetic metallic state, is also pursued by extracting essential
parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp
Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors
We study spin fluctuations in quarter-filled one-dimensional
spin-density-wave systems in presence of short-range Coulomb interactions. By
applying a path integral method, the spin-wave velocity is calculated as a
function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site
interactions. With increasing V or V_2, the pure spin-density-wave state
evolves into a state with coexisting spin- and charge-density waves. The
spin-wave velocity is reduced when several density waves coexist in the ground
state, and may even vanish at large V. The effect of dimerization along the
chain is also considered.Comment: REVTeX, 11 pages, 9 figure
Theoretical Aspects of Charge Ordering in Molecular Conductors
Theoretical studies on charge ordering phenomena in quarter-filled molecular
(organic) conductors are reviewed. Extended Hubbard models including not only
the on-site but also the inter-site Coulomb repulsion are constructed in a
straightforward way from the crystal structures, which serve for individual
study on each material as well as for their systematic understandings. In
general the inter-site Coulomb interaction stabilizes Wigner crystal-type
charge ordered states, where the charge localizes in an arranged manner
avoiding each other, and can drive the system insulating. The variety in the
lattice structures, represented by anisotropic networks in not only the
electron hopping but also in the inter-site Coulomb repulsion, brings about
diverse problems in low-dimensional strongly correlated systems. Competitions
and/or co-existences between the charge ordered state and other states are
discussed, such as metal, superconductor, and the dimer-type Mott insulating
state which is another typical insulating state in molecular conductors.
Interplay with magnetism, e.g., antiferromagnetic state and spin gapped state
for example due to the spin-Peierls transition, is considered as well. Distinct
situations are pointed out: influences of the coupling to the lattice degree of
freedom and effects of geometrical frustration which exists in many molecular
crystals. Some related topics, such as charge order in transition metal oxides
and its role in new molecular conductors, are briefly remarked.Comment: 21 pages, 19 figures, to be published in J. Phys. Soc. Jpn. special
issue on "Organic Conductors"; figs. 4 and 11 replaced with smaller sized
fil
Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration.
Perceptual multistability is a phenomenon in which alternate interpretations of a fixed stimulus are perceived intermittently. Although correlates between activity in specific cortical areas and perception have been found, the complex patterns of activity and the underlying mechanisms that gate multistable perception are little understood. Here, we present a neural field competition model in which competing states are represented in a continuous feature space. Bifurcation analysis is used to describe the different types of complex spatio-temporal dynamics produced by the model in terms of several parameters and for different inputs. The dynamics of the model was then compared to human perception investigated psychophysically during long presentations of an ambiguous, multistable motion pattern known as the barberpole illusion. In order to do this, the model is operated in a parameter range where known physiological response properties are reproduced whilst also working close to bifurcation. The model accounts for characteristic behaviour from the psychophysical experiments in terms of the type of switching observed and changes in the rate of switching with respect to contrast. In this way, the modelling study sheds light on the underlying mechanisms that drive perceptual switching in different contrast regimes. The general approach presented is applicable to a broad range of perceptual competition problems in which spatial interactions play a role
The Spatial and Temporal Deployment of Voluntary Attention across the Visual Field
Several studies have addressed the question of the time it takes for attention to shift from one position in space to another. Here we present a behavioural paradigm which offers a direct access to an estimate of voluntary shift time by comparing, in the same task, a situation in which subjects are required to re-engage their attention at the same spatial location with a situation in which they need to shift their attention to another location, all other sensory, cognitive and motor parameters being equal. We show that spatial attention takes on average 55 ms to voluntarily shift from one hemifield to the other and 38 ms to shift within the same hemifield. In addition, we show that across and within hemifields attentional processes are different. In particular, attentional spotlight division appears to be more difficult to operate within than across hemifields
Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets
Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively
- …
