547 research outputs found

    TACI mutations and impaired B-cell function in subjects with CVID and healthy heterozygotes

    Get PDF
    Mutations in the gene coding for the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) are found in 8% to 10% of subjects with common variable immunodeficiency (CVID). Although heterozygous mutations may coincide with immunodeficiency in a few families, most mutation-bearing relatives are not hypogammaglobulinemic. Thus, the role of TACI mutations in producing the immune defect remains unclear. Objective: This study examined the expression and function of TACI mutations in healthy heterozygous relatives. Methods: We examined the surface and intracellular expression of TACI protein in EBV-transformed B cells of patients and relatives with mutations in 7 families, binding of a proliferationinducing ligand, and secretion of IgG and IgA by ligandactivated B cells.We tested whether Toll-like receptor 9 agonists increased TACI expression and whether an agonistic anti-TACI antibody could induce activation-induced cytidine deaminase mRNA in those with mutations. Results: Intracellular and extracellular TACI expression was defective for B cells of all subjects with mutations, including subjects with CVID and relatives. Although Toll-like receptor 9 triggering normally up-regulates B-cell TACI expression, this was defective for all subjects with mutations. Triggering TACI by an agonistic antibody showed loss of activation-induced cytidine deaminase mRNA induction in all mutation-bearing B cells. However, ligand-induced IgG and IgA production was normal for healthy relatives but not for subjects with CVID. Conclusion: Thus, B cells of relatives of subjects with CVID who have mutations in TACI but normal immune globulin levels still have detectable in vitro B-cell defects.Fil: Martinez Gallo, Monica. Mount Sinai School of Medicine. Departament of Pediatrics; Estados Unidos. Mount Sinai School of Medicine. Immunology Institute; Estados Unidos. Hospital Universitari Vall d; EspañaFil: Radigan, Lin. Mount Sinai School of Medicine. Departament of Medicine; Estados UnidosFil: Almejún, María Belén. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan". Servicio de Inmunolog ía y Reumatolog ía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mart ınez Pomar, Natalia. Son Espases University Hospital. Servei d’ Immunolog ia; EspañaFil: Matamoros, Nuria. Son Espases University Hospital. Servei d’ Immunolog ia; EspañaFil: Cunningham Rundles, Charlotte. Mount Sinai School of Medicine. Departament of Medicine; Estados Unidos. Mount Sinai School of Medicine. Immunology Institute; Estados Unidos. Mount Sinai School of Medicine. Departament of Pediatrics; Estados Unido

    Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement

    Get PDF
    <div><p>Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment.</p></div

    TACI-dependent APRIL signaling maintains autoreactive B cells in a mouse model of systemic lupus erythematosus.

    Get PDF
    Autoantibodies contribute to the development of systemic lupus erythematosus (SLE). APRIL (a proliferation-inducing ligand), a member of the TNF superfamily, regulates plasma-cell survival and binds to TACI (transmembrane activator CAML interactor) and BCMA (B-cell maturation antigen). We previously showed that APRIL blockade delayed disease onset in lupus-prone mice. In order to evaluate the role of APRIL receptors in the development of SLE, APRIL, TACI, BCMA, or double TACI.BCMA null mutations were introduced into the Nba2.Yaa (Y-linked autoimmune acceleration) spontaneous lupus mouse model. Mortality as a consequence of glomerulonephritis (GN) was reduced in Nba2.APRIL(-/-) .Yaa, Nba2.TACI(-/-) .Yaa and double-KO mice compared with Nba2.Yaa mice and correlated with lower levels of circulating antibodies, while splenic populations remained unchanged. In contrast, the appearance of symptoms was accelerated in BCMA-deficient mice, in which TACI signaling was increased. Finally, lupus-prone mice deficient for the APRIL-TACI axis produced less pathogenic antibodies and developed less GN. Disease reduction was attributed to impaired T-independent type 2 responses when the APRIL-TACI signaling axis was disrupted. Collectively, our results have identified and confirmed APRIL as a new target involved in B-cell activation, in the maintenance of plasma cell survival and subsequent increased autoantibody production that sustains lupus development in mice

    Production of B cell growth factor by a Leu-7+, OK M1+ non-T cell with the features of large granular lymphocytes.

    Get PDF

    TNF superfamily member APRIL enhances midbrain dopaminergic axon growth and contributes to the nigrostriatal projection in vivo

    Get PDF
    We have studied the role of the tumor necrosis factor superfamily member APRIL in the development of embryonic mouse midbrain dopaminergic neurons in vitro and in vivo. In culture, soluble APRIL enhanced axon growth during a window of development between E12 and E14 when nigrostriatal axons are growing to their targets in the striatum in vivo. April transcripts were detected in both the striatum and midbrain during this period and at later stages. The axon growth–enhancing effect of APRIL was similar to that of glial cell-derived neurotrophic factor (GDNF), but in contrast to GDNF, APRIL did not promote the survival of midbrain dopaminergic neurons. The effect of APRIL on axon growth was prevented by function-blocking antibodies to one of its receptors, BCMA (TNFRSF13A), but not by function-blocking antibodies to the other APRIL receptor, TACI (TNFRSF13B), suggesting that the effects of APRIL on axon growth are mediated by BCMA. In vivo, there was a significant reduction in the density of midbrain dopaminergic projections to the striatum in April −/− embryos compared with wild type littermates at E14. These findings demonstrate that APRIL is a physiologically relevant factor for the nigrostriatal projection. Given the importance of the degeneration of dopaminergic nigrostriatal connections in the pathogenesis and progression of Parkinson's disease, our findings contribute to our understanding of the factors that establish nigrostriatal integrity.</p

    Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders.

    Get PDF
    In the present study, we have investigated the functional profile of CD4 T cells from patients with common variable immunodeficiency (CVID), including production of cytokines and proliferation in response to bacteria and virus-derived antigens. We show that the functional impairment of CD4 T cells, including the reduced capacity to proliferate and to produce IFN-γ and IL-2, was restricted to bacteria-specific and not virus-specific CD4 T cells. High levels of endotoxins were found in the plasma of patients with CVID, suggesting that CD4 T cell dysfunction might be caused by bacterial translocation. Of note, endotoxemia was associated with significantly higher expression of programmed death 1 (PD-1) on CD4 T cells. The blockade of the PD-1-PD-L1/2 axis in vitro restored CD4 T cell proliferation capacity, thus indicating that PD-1 signaling negatively regulates CD4 T cell functions. Finally, we showed that intravenous immunoglobulin G (IVIG) treatment significantly reduced endotoxemia and the percentage of PD-1(+) CD4 T cells, and restored bacteria-specific CD4 T cell cytokine production and proliferation. In conclusion, the present study demonstrates that the CD4 T cell exhaustion and functional impairment observed in CVID patients is associated with bacterial translocation and that IVIG treatment resolves bacterial translocation and restores CD4 T cell functions

    Analysis of TACI mutations in CVID & RESPI patients who have inherited HLA B*44 or HLA*B8

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent reports have suggested that Common Variable Immunodeficieny (CVID) can present as an autosomal dominant trait dependent on the inheritance of a set of uncommon mutations/alleles of TACI (transmembrane activator and calcium-modulator and cyclophilin ligand interactor) involving exons 3 or 4. Penetrance, however, appears to be incomplete. Among our clinic population, the greatest genetic linkage for CVID is to the major histocompatibility complex (MHC) on chromosome 6. The majority of our patients have inherited HLA *DQ2, *DR7, *DR3(17), *B8, and/or *B44. Of these, HLA*B44 was present in almost half of the patients and was thus the most common susceptibility allele. HLA *B44 was also found to be over-represented among patients who presented to our clinic with adult-onset recurrent sinopulmonary infections (RESPI) and normal serum immunoglobulin levels, a cohort that included first and second degree relatives of patients with CVID. One of the two original reports of the association between TACI and CVID also reported Human Leukocyte Antigen (HLA) haplotypes. Of 13 affected subjects, nine had inherited HLA *B8 and six had inherited HLA B44. This raised the possibility that TACI mutations might synergize with MHC class I alleles to enhance susceptibility to humoral immune deficiency.</p> <p>Methods</p> <p>We identified 63 CVID patients irrespective of HLA status and 13 RESPI patients who had inherited HLA*B44. To evaluate for mutations in the gene for TACI, we PCR amplified and sequenced TACI exons 3 and 4 from these patients.</p> <p>Results</p> <p>Of the 76 patients, eleven proved heterozygous for a previously reported, silent T->G polymorphism [rs35062843] at proline 97 in exon 3. However, none of the 13 RESPI patients and only one of the 63 CVID patients inherited a TACI allele previously associated with CVID. This patient was heterozygous for the TACI A181E allele (exon 4). She did not carry *DQ2, *DR7, *DR3(17), *B8, or *B44.</p> <p>Conclusion</p> <p>These findings suggest that TACI mutations are unlikely to play a critical role in creating susceptibility to CVID among patients with previously recognized MHC class I and class II susceptibility alleles.</p> <p>Supported by NIH/USIDNET N01-AI30070, NIH R21 AI079741 and NIH M01-RR00032</p
    corecore