85 research outputs found
Fano effect and Kondo effect in quantum dots formed in strongly coupled quantum wells
We present lateral transport measurements on strongly, vertically coupled
quantum dots formed in separate quantum wells in a GaAs/AlGaAs heterostructure.
Coulomb oscillations are observed forming a honeycomb lattice consistent with
two strongly coupled dots. When the tunnel barriers in the upper well are
reduced we observe the Fano effect due to the interfering paths through a
resonant state in the lower well and a continuum state in the upper well. In
both regimes an in plane magnetic field reduces the coupling between the wells
when the magnetic length is comparable to the center to center separation of
the wells. We also observe the Kondo effect which allows the spin states of the
double dot system to be probed.Comment: 4 pages, 5 figure
Relative concentration and structure of native defects in GaP
The native defects in the compound semiconductor GaP have been studied using a pseudopotential density functional theory method in order to determine their relative concentrations and the most stable charge states. The electronic and atomic structures are presented and the defect concentrations are estimated using calculated formation energies. Relaxation effects are taken into account fully and produce negative-U charge transfer levels for VP and PGa. The concentration of VGa is in good agreement with the results of positron annihilation experiments. The charge transfer levels presented compare qualitatively well with experiments where available. The effect of stoichiometry on the defect concentrations is also described and is shown to be considerable. The lowest formation energies are found for PGa +2 in p-type and VGa −3 in n-type GaP under P-rich conditions, and for GaP −2 in n-type GaP under Ga-rich conditions. Finally, the finite size errors arising from the use of supercells with periodic boundary conditions are examined
Electron transport in Coulomb- and tunnel-coupled one-dimensional systems
We develop a linear theory of electron transport for a system of two
identical quantum wires in a wide range of the wire length L, unifying both the
ballistic and diffusive transport regimes. The microscopic model, involving the
interaction of electrons with each other and with bulk acoustical phonons
allows a reduction of the quantum kinetic equation to a set of coupled
equations for the local chemical potentials for forward- and backward-moving
electrons in the wires. As an application of the general solution of these
equations, we consider different kinds of electrical contacts to the
double-wire system and calculate the direct resistance, the transresistance, in
the presence of tunneling and Coulomb drag, and the tunneling resistance. If L
is smaller than the backscattering length l_P, both the tunneling and the drag
lead to a negative transresistance, while in the diffusive regime (L >>l_P) the
tunneling opposes the drag and leads to a positive transresistance. If L is
smaller than the phase-breaking length, the tunneling leads to interference
oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure
Point defects on the (110) surfaces of InP, InAs and InSb: a comparison with bulk
The basic properties of point defects, such as local geometries, positions of charge-transfer levels, and formation energies, have been calculated using density-functional theory, both in the bulk and on the 110 surface of InP, InAs, and InSb. Based on these results we discuss the electronic properties of bulk and surface defects, defect segregation, and compensation. In comparing the relative stability of the surface and bulk defects, it is found that the native defects generally have higher formation energies in the bulk. From this it can be concluded that at equilibrium there is a considerably larger fraction of defects at the surface and under nonequilibrium conditions defects are expected to segregate to the surface, given sufficient time. In most cases the charge state of a defect changes upon segregation, altering the charge-carrier concentrations. The photo-thresholds are also calculated for the three semiconductors and are found to be in good agreement with experimental data
Giant Thermoelectric Effect from Transmission Supernodes
We predict an enormous order-dependent quantum enhancement of thermoelectric
effects in the vicinity of a higher-order `supernode' in the transmission
spectrum of a nanoscale junction. Single-molecule junctions based on
3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The
nonequilibrium thermodynamic efficiency and power output of a thermoelectric
heat engine based on a 1,3-benzene junction are calculated using many-body
theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure
Mode Spectroscopy and Level Coupling in Ballistic Electron Waveguides
A tunable quantum point contact with modes occupied in both transverse
directions is studied by magnetotransport experiments. We use conductance
quantization of the one-dimensional subbands as a tool to determine the mode
spectrum. A magnetic field applied along the direction of the current flow
couples the modes. This can be described by an extension of the Darwin-Fock
model. Anticrossings are observed as a function of the magnetic field, but not
for zero field or perpendicular field directions, indicating coupling of the
subbands due to nonparabolicity in the electrical confinement.Comment: 4 pages, 3 figure
Direct observation of electron doping in La0.7Ce0.3MnO3 using x-ray absorption spectroscopy
We report on a X-ray absorption spectroscopic (XAS) study on a thin film of
La0.7Ce0.3MnO3, a manganite which was previously only speculated to be an
electron doped system. The measurements clearly show that the cerium is in the
Ce(IV) valence state and that the manganese is present in a mixture of Mn2+ and
Mn3+ valence states. These data unambiguously demonstrate that La0.7Ce0.3MnO3
is an electron doped colossal magnetoresistive manganite, a finding that may
open up new opportunities both for device applications as well as for further
basic research towards a better modelling of the colossal magnetoresistance
phenomenon in these materials.Comment: 4 pages, 3 figures, revised versio
Resonant transmission through an open quantum dot
We have measured the low-temperature transport properties of a quantum dot
formed in a one-dimensional channel. In zero magnetic field this device shows
quantized ballistic conductance plateaus with resonant tunneling peaks in each
transition region between plateaus. Studies of this structure as a function of
applied perpendicular magnetic field and source-drain bias indicate that
resonant structure deriving from tightly bound states is split by Coulomb
charging at zero magnetic field.Comment: To be published in Phys. Rev. B (1997). 8 LaTex pages with 5 figure
The number of transmission channels through a single-molecule junction
We calculate transmission eigenvalue distributions for Pt-benzene-Pt and
Pt-butadiene-Pt junctions using realistic state-of-the-art many-body
techniques. An effective field theory of interacting -electrons is used to
include screening and van der Waals interactions with the metal electrodes. We
find that the number of dominant transmission channels in a molecular junction
is equal to the degeneracy of the molecular orbital closest to the metal Fermi
level.Comment: 9 pages, 8 figure
Safe Design Suggestions for Vegetated Roofs
Rooftop vegetation is becoming increasingly popular because of its environmental benefits and its ability to earn green-building certification credits. With the exception of one international guideline, there is little mention of worker safety and health in vegetated-roof codes and literature. Observations and field investigations of 19 vegetated roofs in the United States revealed unsafe access for workers and equipment, a lack of fall-protection measures, and other site-specific hazards. Design for safety strategies and the integration of life-cycle safety thinking with green-building credits systems are the preferred methods to reduce risk to workers on vegetated roofs. Design suggestions have been developed to add to the body of knowledge. The findings complement several National Institute for Occupational Safety and Health (NIOSH) construction and prevention through design (PtD) goals and are congruent with NIOSH’s Safe Green Jobs initiative. Organizations that install and maintain vegetated roofs can utilize the findings to understand hazards, take precautions, and incorporate safety into their bids
The published version of this article is available here: 10.1061/(ASCE)CO.1943-7862.0000500Support from the the Virginia Tech Occupational Safety and Health Research Center through the Kevin P. Granata Pilot Program funded by the Institute for Critical Technology and Applied Sciences
- …
