2,107 research outputs found
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
A spin liquid is a novel quantum state of matter with no conventional order
parameter where a finite charge gap exists even though the band theory would
predict metallic behavior. Finding a stable spin liquid in two or higher
spatial dimensions is one of the most challenging and debated issues in
condensed matter physics. Very recently, it has been reported that a model of
graphene, i.e., the Hubbard model on the honeycomb lattice, can show a spin
liquid ground state in a wide region of the phase diagram, between a semi-metal
(SM) and an antiferromagnetic insulator (AFMI). Here, by performing numerically
exact quantum Monte Carlo simulations, we extend the previous study to much
larger clusters (containing up to 2592 sites), and find, if any, a very weak
evidence of this spin liquid region. Instead, our calculations strongly
indicate a direct and continuous quantum phase transition between SM and AFMI.Comment: 15 pages with 7 figures and 9 tables including supplementary
information, accepted for publication in Scientific Report
Multiscale photosynthetic exciton transfer
Photosynthetic light harvesting provides a natural blueprint for
bioengineered and biomimetic solar energy and light detection technologies.
Recent evidence suggests some individual light harvesting protein complexes
(LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction
centers (RCs) via an interplay between excitonic quantum coherence, resonant
protein vibrations, and thermal decoherence. The role of coherence in vivo is
unclear however, where excitons are transferred through multi-LHC/RC aggregates
over distances typically large compared with intra-LHC scales. Here we assess
the possibility of long-range coherent transfer in a simple chromophore network
with disordered site and transfer coupling energies. Through renormalization we
find that, surprisingly, decoherence is diminished at larger scales, and
long-range coherence is facilitated by chromophoric clustering. Conversely,
static disorder in the site energies grows with length scale, forcing
localization. Our results suggest sustained coherent exciton transfer may be
possible over distances large compared with nearest-neighbour (n-n) chromophore
separations, at physiological temperatures, in a clustered network with small
static disorder. This may support findings suggesting long-range coherence in
algal chloroplasts, and provides a framework for engineering large chromophore
or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published
online by Nature Physics (2012
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Constraints on the braneworld from compact stars
According to the braneworld idea, ordinary matter is confined on a three-dimensional space (brane) that is embedded in a higher-dimensional space-time where
gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman–Oppenheimer–Volkoff equations, using different representative equations
of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.info:eu-repo/semantics/publishedVersio
Holographic c-theorems in arbitrary dimensions
We re-examine holographic versions of the c-theorem and entanglement entropy
in the context of higher curvature gravity and the AdS/CFT correspondence. We
select the gravity theories by tuning the gravitational couplings to eliminate
non-unitary operators in the boundary theory and demonstrate that all of these
theories obey a holographic c-theorem. In cases where the dual CFT is
even-dimensional, we show that the quantity that flows is the central charge
associated with the A-type trace anomaly. Here, unlike in conventional
holographic constructions with Einstein gravity, we are able to distinguish
this quantity from other central charges or the leading coefficient in the
entropy density of a thermal bath. In general, we are also able to identify
this quantity with the coefficient of a universal contribution to the
entanglement entropy in a particular construction. Our results suggest that
these coefficients appearing in entanglement entropy play the role of central
charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of
odd-dimensional field theories, which extends Cardy's proposal for even
dimensions. Beyond holography, we were able to show that for any
even-dimensional CFT, the universal coefficient appearing the entanglement
entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
Conservation of geosites as a tool to protect geoheritage: the inventory of Ceará Central Domain, Borborema Province - NE/Brazil
The Ceará Central Domain, in the northern Borborema Province/NE Brazil, encompasses important geological records (geosites) which allow understanding a relevant period of the Earth’s evolution, mainly associated to Neoproterozoic Brazilian/Pan-African Cycle and West Gondwana amalgamation, besides Neoarchean to Ordovician records. The presented geoheritage inventory aims to characterise the geosites with scienti c relevance of Ceará Central Domain. By applying a method for large areas, the nal selection resulted in eight geological frameworks represented by 52 geosites documented in a single database. This is the rst step for a geoconservation strategy based on systematic inventories, statutory protection, geoethical behaviour and awareness about scienti c, educational and/or cultural relevance of geosites.We specially thank all experts that helped us with
this inventory: Afonso Almeida, Carlos E.G. de
Araújo, César Veríssimo, Christiano Magini, Clóvis
Vaz Parente, Felipe G. Costa, Irani C. Mattos,
Neivaldo de Castro, Otaciel de Melo, Sebástian G.
Chiozza, Ticiano Santos and Stefano Zincone. We
are also thankful to Kátia Mansur, Ricardo Fraga
Pereira and anonymous reviewers for their valuable
contributions. PM is grateful to Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) for PhD mobility scholarship PDSE
Program/Process n 88881.132168/2016-01info:eu-repo/semantics/publishedVersio
Umbrella : A deployable SDN-enabled IXP switching fabric
Software Defined internet eXchange Points (SDXs) are a promising solution to the long-standing limitations and problems of interdomain routing. While proposed SDX architectures have improved the scalability of the control plane, these solutions have ignored the underlying fabric upon which they should be deployed. This work makes the case for a new fabric architecture that proposes stronger control and data plane separation
- …
