5,973 research outputs found
Recommended from our members
Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia.
We observed that high-dose methylprednisolone (HDMP) and rituximab was well tolerated and had promising activity when used in combination to treat patients with fludarabine-refractory chronic lymphocytic leukemia (CLL). This prompted us to evaluate the use of these agents in frontline therapy. A total of 28 patients with a median age of 65 years enrolled in this study. Patients received HDMP at 1 g/m(2) each day for 3 days during each of the three 4-week cycles together with rituximab and prophylactic antimicrobial therapy. The treatment was well tolerated with few adverse events of grade III or higher. The overall response rate was 96% (N=27). Nine patients (32%) achieved a complete remission (CR), two of which were without detectable minimal residual disease (MRD). Six patients with MRD received consolidation with alemtuzumab; five of these patients achieved an MRD-negative CR. With over 3 years of follow-up median progression-free survival was 30.3 months with only 39% of patients requiring additional therapy, and an overall survival was 96%. This study demonstrates that HDMP and rituximab is an effective nonmyelosuppressive treatment combination for patients with CLL that warrants consideration particularly for patients with limited myeloid reserve that might not tolerate standard treatment regimens
Unitarity Bounds in AdS_3 Higher Spin Gravity
We study SL(N,R) Chern-Simons gauge theories in three dimensions. The choice
of the embedding of SL(2,R) in SL(N,R), together with asymptotic boundary
conditions, defines a theory of higher spin gravity. Each inequivalent
embedding leads to a different asymptotic symmetry group, which we map to an
OPE structure at the boundary. A simple inspection of these algebras indicates
that only the W_N algebra constructed using the principal embedding could admit
a unitary representation for large values of the central charge.Comment: 1+23 pages, Version 3 Appendix B revise
Quantizing higher-spin gravity in free-field variables
We study the formulation of massless higher-spin gravity on AdS in a
gauge in which the fundamental variables satisfy free field Poisson brackets.
This gauge choice leaves a small portion of the gauge freedom unfixed, which
should be further quotiented out. We show that doing so leads to a bulk version
of the Coulomb gas formalism for CFT's: the generators of the residual
gauge symmetries are the classical limits of screening charges, while the
gauge-invariant observables are classical charges. Quantization in these
variables can be carried out using standard techniques and makes manifest a
remnant of the triality symmetry of . This symmetry can be
used to argue that the theory should be supplemented with additional matter
content which is precisely that of the Prokushkin-Vasiliev theory. As a further
application, we use our formulation to quantize a class of conical surplus
solutions and confirm the conjecture that these are dual to specific degenerate
primaries, to all orders in the large central charge expansion.Comment: 31 pages + appendices. V2: typos corrected, reference adde
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Entropy of three-dimensional asymptotically flat cosmological solutions
The thermodynamics of three-dimensional asymptotically flat cosmological
solutions that play the same role than the BTZ black holes in the anti-de
Sitter case is derived and explained from holographic properties of flat space.
It is shown to coincide with the flat-space limit of the thermodynamics of the
inner black hole horizon on the one hand and the semi-classical approximation
to the gravitational partition function associated to the entropy of the outer
horizon on the other. This leads to the insight that it is the Massieu function
that is universal in the sense that it can be computed at either horizon.Comment: 16 pages Latex file, v2: references added, cosmetic changes, v3: 1
reference adde
Hidden Conformal Symmetry of the Reissner-Nordstr{\o}m Black Holes
Motivated by recent progresses in the holographic descriptions of the Kerr
and Reissner-Nordstr{\o}m (RN) black holes, we explore the hidden conformal
symmetry of nonextremal uplifted 5D RN black hole by studying the near horizon
wave equation of a massless scalar field propagating in this background.
Similar to the Kerr black hole case, this hidden symmetry is broken by the
periodicity of the associated angle coordinate in the background geometry, but
the results somehow testify the dual CFT description of the nonextremal RN
black holes. The duality is further supported by matching of the entropies and
absorption cross sections calculated from both CFT and gravity sides.Comment: 14 pages, no figur
Effects of Combining Feed Grade Urea and a Slow-release Urea Product on Performance, Dietary Energetics and Carcass Characteristics of Feedlot Lambs Fed Finishing Diets with Different Starch to Acid Detergent Fiber Ratios.
Recent findings have shown that microbial nitrogen flow and digestible energy of diets are increased when urea is combined with a slow-release urea (SRU) in diets with a starch to acid detergent fibre ratio (S:F) 4:1. This affect is attributable to enhanced synchrony between ruminal N availability for microbial growth and carbohydrate degradation. To verify the magnitude of this effects on lamb performance, an experiment was conducted to evaluate the effects of combining urea and a SRU in diets containing S:F ratios of 3:1, 4:1, or 5:1 on performance, dietary energetics and carcass characteristics of finishing lambs. For that, 40 Pelibuey×Katahdin lambs (36.65±3 kg) were assigned to one of five weight groupings in 20 pens (5 repetition/treatments). The S:F ratio in the diet was manipulated by partially replacing the corn grain and dried distiller's grain with solubles by forage (wheat straw) and soybean meal to reach S:F ratios of 3:1, 4:1 or 5:1. An additional treatment of 4:1 S:F ratio with 0.8% urea as the sole source of non-protein nitrogen was used as a reference for comparing the effect of urea combination vs. conventional urea at the same S:F ratio. There were no treatment effects on dry matter intake (DMI). Compared the urea combination vs urea at the same S:F ratio, urea combination increased (p<0.01) average daily gain (ADG, 18.3%), gain for feed (G:F, 9.5%), and apparent energy retention per unit DMI (8.2%). Irrespective of the S:F ratio, the urea combination improved the observed-to-expected dietary ratio and apparent retention per unit DMI was maximal (quadratic effect, p≤0.03) at an S:F ratio of 4:1, while the conventional urea treatment did not modify the observed-to-expected net energy ratio nor the apparent retention per unit DMI at 4:1 S:F ratio. Urea combination group tended (3.8%, p = 0.08) to have heavier carcasses with no effects on the rest of carcass characteristics. As S:F ratio increased, ADG, G:F, dietary net energy, carcass weight, dressing percentage and longissimus thoracis (LM) area increased linearly (p≤0.02). Combining urea and a slow-release urea product results in positive effects on growth performance and dietary energetics, but the best responses are apparently observed when there is a certain proportion (S:F ratio = 4:1) of starch to acid detergent fibre in the diet
Thermodynamics of Higher Spin Black Holes in AdS
We discuss the thermodynamics of recently constructed three-dimensional
higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with
generalized asymptotically-anti-de Sitter boundary conditions. From a
holographic perspective, these bulk theories are dual to two-dimensional CFTs
with W_N symmetry algebras, and the black hole solutions are dual to thermal
states with higher spin chemical potentials and charges turned on. Because the
notion of horizon area is not gauge-invariant in the higher spin theory, the
traditional approaches to the computation of black hole entropy must be
reconsidered. One possibility, explored in the recent literature, involves
demanding the existence of a partition function in the CFT, and consistency
with the first law of thermodynamics. This approach is not free from
ambiguities, however, and in particular different definitions of energy result
in different expressions for the entropy. In the present work we show that
there are natural definitions of the thermodynamically conjugate variables that
follow from careful examination of the variational principle, and moreover
agree with those obtained via canonical methods. Building on this intuition, we
derive general expressions for the higher spin black hole entropy and free
energy which are written entirely in terms of the Chern-Simons connections, and
are valid for both static and rotating solutions. We compare our results to
other proposals in the literature, and provide a new and efficient way to
determine the generalization of the Cardy formula to a situation with higher
spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the
free energy adde
- …
