4,093 research outputs found
Invasion strategies of the white ginger lily Hedychium coronarium J. Konig (Zingiberaceae) under different competitive and environmental conditions
Recommended from our members
Investigating the impact of poverty on colonization and infection with drug-resistant organisms in humans: a systematic review
Background
Poverty increases the risk of contracting infectious diseases and therefore exposure to antibiotics. Yet there is lacking evidence on the relationship between income and non-income dimensions of poverty and antimicrobial resistance. Investigating such relationship would strengthen antimicrobial stewardship interventions.
Methods
A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Ovid, MEDLINE, EMBASE, Scopus, CINAHL, PsychINFO, EBSCO, HMIC, and Web of Science databases were searched in October 2016. Prospective and retrospective studies reporting on income or non-income dimensions of poverty and their influence on colonisation or infection with antimicrobial-resistant organisms were retrieved. Study quality was assessed with the Integrated quality criteria for review of multiple study designs (ICROMS) tool.
Results
Nineteen articles were reviewed. Crowding and homelessness were associated with antimicrobial resistance in community and hospital patients. In high-income countries, low income was associated with Streptococcus pneumoniae and Acinetobacter baumannii resistance and a seven-fold higher infection rate. In low-income countries the findings on this relation were contradictory. Lack of education was linked to resistant S. pneumoniae and Escherichia coli. Two papers explored the relation between water and sanitation and antimicrobial resistance in low-income settings.
Conclusions
Despite methodological limitations, the results suggest that addressing social determinants of poverty worldwide remains a crucial yet neglected step towards preventing antimicrobial resistance
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Multiscale photosynthetic exciton transfer
Photosynthetic light harvesting provides a natural blueprint for
bioengineered and biomimetic solar energy and light detection technologies.
Recent evidence suggests some individual light harvesting protein complexes
(LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction
centers (RCs) via an interplay between excitonic quantum coherence, resonant
protein vibrations, and thermal decoherence. The role of coherence in vivo is
unclear however, where excitons are transferred through multi-LHC/RC aggregates
over distances typically large compared with intra-LHC scales. Here we assess
the possibility of long-range coherent transfer in a simple chromophore network
with disordered site and transfer coupling energies. Through renormalization we
find that, surprisingly, decoherence is diminished at larger scales, and
long-range coherence is facilitated by chromophoric clustering. Conversely,
static disorder in the site energies grows with length scale, forcing
localization. Our results suggest sustained coherent exciton transfer may be
possible over distances large compared with nearest-neighbour (n-n) chromophore
separations, at physiological temperatures, in a clustered network with small
static disorder. This may support findings suggesting long-range coherence in
algal chloroplasts, and provides a framework for engineering large chromophore
or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published
online by Nature Physics (2012
Partonic description of a supersymmetric p-brane
We consider supersymmetric extensions of a recently proposed partonic
description of a bosonic p-brane which reformulates the Nambu-Goto action as an
interacting multi-particle action with Filippov-Lie algebra gauge symmetry. We
construct a worldline supersymmetric action by postulating, among others, a
p-form fermion. Demanding a local worldline supersymmetry rather than the full
worldvolume supersymmetry, we circumvent a known no-go theorem against the
construction of a Ramond-Neveu-Schwarz supersymmetric action for a p-brane of
p>1. We also derive a spacetime supersymmetric Green-Schwarz extension from the
preexisting kappa-symmetric action.Comment: 1+16 pages, no figure; References added and Concluding section
expanded. Final version to appear in JHE
The Escherichia coli transcriptome mostly consists of independently regulated modules
Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and
Technology (CICYT), the
Spanish National Parks agency, the European Commission, the
Spanish Ministry of Science, and the European
Social Fund
Positivity, entanglement entropy, and minimal surfaces
The path integral representation for the Renyi entanglement entropies of
integer index n implies these information measures define operator correlation
functions in QFT. We analyze whether the limit , corresponding
to the entanglement entropy, can also be represented in terms of a path
integral with insertions on the region's boundary, at first order in .
This conjecture has been used in the literature in several occasions, and
specially in an attempt to prove the Ryu-Takayanagi holographic entanglement
entropy formula. We show it leads to conditional positivity of the entropy
correlation matrices, which is equivalent to an infinite series of polynomial
inequalities for the entropies in QFT or the areas of minimal surfaces
representing the entanglement entropy in the AdS-CFT context. We check these
inequalities in several examples. No counterexample is found in the few known
exact results for the entanglement entropy in QFT. The inequalities are also
remarkable satisfied for several classes of minimal surfaces but we find
counterexamples corresponding to more complicated geometries. We develop some
analytic tools to test the inequalities, and as a byproduct, we show that
positivity for the correlation functions is a local property when supplemented
with analyticity. We also review general aspects of positivity for large N
theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of
Wilson loops. Conclusions regarding entanglement entropy unchange
Osteogenesis evaluation of duck’s feet derived collagen/hydroxyapatite sponges immersed in dexamethasone
Background: The aim of this study was to investigate the osteogenesis effects of DC and DC/HAp sponge immersed in without and with dexamethasone.
Methods: The experimental groups in this study were DC and DC/HAp sponge immersed in without dexamethasone (Dex(â )DC and Dex(â )-DC/HAp group) and with dexamethasone (Dex(+)-DC and Dex(+)-DC/HAp group). We characterized DC and DC/HAp sponge using compressive strength, scanning electron microscopy (SEM). Also, osteogenic differentiation of BMSCs on sponge (Dex(â )DC, Dex(â )-DC/HAp, Dex(+)-DC and Dex(+)-DC/HAp group) was assessed by SEM, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assay, alkaline phosphatase (ALP) activity assay and reverse transcription-PCR (RT-PCR).
Results: In this study, we assessed osteogenic differentiation of BMSCs on Duckâ s feet-derived collagen (DC)/ HAp sponge immersed with dexamethasone Dex(+)-DC/HAp. These results showed that Dex(+)-DC/HAp group increased cell proliferation and osteogenic differentiation of BMSCs during 28 days.
Conclusion: From these results, Dex(+)-DC/HAp can be envisioned as a potential biomaterial for bone regeneration applications.This work was supported by Technology Commercialization Support Program [grant number 814005-03-3-HD020], Ministry for Food, Agriculture, Forestry and Fisheries (MIFAFF).info:eu-repo/semantics/publishedVersio
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
- …
